物理学本科毕业论文.docx

上传人:小飞机 文档编号:3647085 上传时间:2023-03-14 格式:DOCX 页数:15 大小:43.17KB
返回 下载 相关 举报
物理学本科毕业论文.docx_第1页
第1页 / 共15页
物理学本科毕业论文.docx_第2页
第2页 / 共15页
物理学本科毕业论文.docx_第3页
第3页 / 共15页
物理学本科毕业论文.docx_第4页
第4页 / 共15页
物理学本科毕业论文.docx_第5页
第5页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《物理学本科毕业论文.docx》由会员分享,可在线阅读,更多相关《物理学本科毕业论文.docx(15页珍藏版)》请在三一办公上搜索。

1、物理学本科毕业论文量子力学中微扰理论的简单论述 摘要:在量子力学中,由于体系的哈密顿函数算符往往比较复杂,薛定谔方程能够严格求解的情况寥寥可数。因此,引入各种近似方法以求解薛定谔方程的问题就什么重要。常用的近似方法有微扰法、变分法、半经典近似和绝热近似等,不同的近似方法有不同的实用范围,在下文中将讨论分立谱的微扰理论。对于体系的不含时的哈密顿函数的分立谱的的微扰理论可以分为非简并定态微扰理论和简并定态微扰理论。 关键词:近似方法;非简并定态微扰理论;简并定态微扰理论 目 录 1 非简并定态微扰论. 1 1.1 理论简述 . 1 1.2 一级微扰 . 3 1.3 二级修正 . 4 1.4 非简并

2、定态微扰的讨论 . 6 1.5 海曼费曼定理 . 7 2 简并定态微扰论 . 8 2.1理论简述: . 8 2.2简并定态微扰论的讨论 . 10 3 结束语 . 11 致谢 . 错误!未定义书签。 参考文献 . 11 0 引言 微扰理论是量子力学的重要的理论。对于中等复杂度的哈密顿量,很难找到其薛定谔方程的精确解。我们所知道的就只有几个量子模型有精确解,像氢原子、量子谐振子、与箱归一化粒子。这些量子模型都太过理想化,无法适当地描述大多数的量子系统。应用微扰理论,可以将这些理想的量子模型的精确解,用来生成一系列更复杂的量子系统的解答。 量子力学的微扰理论引用一些数学的微扰理论的近似方法。当遇到比

3、较复杂的量子系统时,这些方法试着将复杂的量子系统简单化或理想化,变成为有精确解的量子系统,再应用理想化的量子系统的精确解,来解析复杂的量子系统。基本的方法是,从一个简单的量子系统开始,这简单的系统必须有精确解,在这简单系统的哈密顿量里,加上一个很弱的微扰,变成了较复杂系统的哈密顿量。假若这微扰不是很大,复杂系统的许多物理性质可以表达为简单系统的物理性质加上一些修正。这样,从研究比较简单的量子系统所得到的知识,可以进而研究比较复杂的量子系统。 微扰理论可以分为两类,不含时微扰理论与含时微扰理论。不含时微扰理论的微扰哈密顿量不含时间;而含时微扰理论的微扰哈密顿量含时间。 1 非简并定态微扰论 1.

4、1 理论简述 近似方法的精神是从已知的较简单的问题准确解出发,近似地求较复杂的一些问题的解,当然,还希望了解这些求解方法的近似程度,估算出近似解和准确解之间的最大偏离。下面我们将讨论体系在受到外界与时间无关的微小扰动时,它的能级和波函数所发生的变化。1 假设体系的哈密顿量H不显含t,定态的薛定谔方程 Hj=Ej - 1 - 满足下述条件: H可分解为H0和H两部分H0厄米,而且H远小于H0: H=H+H0 H=H0 上式表示,H与H的差别很小,H可视为加与H0上的微扰。由于H不显含t,因此,无论H0或是H均不显含t。 H0的本征值和已经求出,即在H0的本征方程 H0jn(0)=En(0)jn(

5、0) (0)中,能级En(0)及波函数jn都是已知的。微扰论的任务就是从H0的本征值和本征函数出发,近似求出经过微扰H后,H的本征值和本征函数。 H0的能级无简并,严格来说,是要求通过微扰论来计算它的修正的那个能级无简并。例如,要通过微扰论计算H对H0的第n个能级En(0)的(0)修正,就要求无简并,它相应的波函数jn只有一个。其他能级既可以是简并的,也可以不是简并的。2 H0的能级组成分立谱,或者严格点说,至少必须要求通过微扰来计算它的修正的那个能级En(0)处于分立谱内,En(0)是束缚态。 在满足上述条件下,可利用定态非简并微扰论从已知的H0的本征值和本征函数近似求出H的本征值和本征函数

6、。为表征微扰的近似程度,通常可引进一个小的参数l,将H写成lH,将的微小程度通过l反映出来。体系经微扰后的薛定谔方程是: Hjn=(H0+lH)jn=Enjn 将能级En和波函数jn按l展开: (0)(1)(2)En=En+lEn+l2En+L (0)(1)(2)jn=jn+ljn+l2jn+L - 2 - (1)(2)(1)(2)En,En,jn,jn,分别表示能级En和波函数jn的一级,二级修正。 将上两式代入薛定谔方程中得: (0)(1)(2)+ljn+l2jn+L) (H0+lH)(jn(0)(1)(2)(0)(1)(2)+lEn+l2En+L)(jn+ljn+l2jn+L) =(En

7、然后比较上式两端的l的同次幂,可得出各级近似下的方程式: l0: H0jn(0)=En(0)jn(0) (1)(1)jn(0) l1: (H0-En(0)jn=-(H-En(2)(1)(1)(2)(0)jn (H-En)jnl2: (H0-En(0)=-jn+En 零级近似显然是无微扰时的定态薛定谔方程式,同样还可以列出准确到l3,l4等各级的近似方程式。3 1.2 一级微扰 (1)(1)jn(0)。 求一级微扰修正只需要求解(H0-En(0)jn=-(H-En由于H0厄米,H0的本征函数系l(0)系展开 jn(1)jn=al(1)jl(0) 将此式代入l1的近似薛定谔方程中的 (0)*为求出

8、展开系数al(1),以jk左乘上式并对全空间积分,利用(0)系的正jn交归一性后,得 当n=k时,得 - 3 - 当nk时,得 (1)那么接下来计算an,利用jn的归一条件,在准确到O(l)数量级后, (0)(0)jn(0)=1得: 又因波函数jn归一,jn(1)将jn=al(1)jl(0)代入上式得 l(1)an必为纯虚数,即 l为实数。准确到l的一级近似,微扰后体系的波函数是 (1)上式表明,an的贡献无非是使波函数增加了一个无关紧要的常数相位因子,那么,不失普遍性,可取 因此,准确到一级近似,体系的能级和波函数是 上式表明,准确到一级近似,H在无微扰能量表象中的对角元给出能量的一级修正,

9、非对角元给出波函数的一级修正。4 1.3 二级修正 (1)(1)jn(0) 求二级修正需要求解(H0-En(0)jn=-(H-En- 4 - 与求一级修正的步骤相似,将二级修正波函数按j展开 (0)n将此式代入上式得: (0)*以jk左乘上式,并对全空间进行积分后得: (1)当n=k时,得,考虑到an=0,由上式得: 当nk时,由上式得: 、 (2)至于an,同样可以由波函数的归一条件算出,由 得 或 (2)同样,若取an为实数,那么由上式得: 综合上述,准确到二级近似吗,体系的能级和波函数是: - 5 - 同理,其他各级近似也可用类似的方法算出。5 1.4 非简并定态微扰的讨论 由微扰后的能

10、级可知,微扰实用的条件是 只有满足该式,才能满足微扰级数的收敛性,保证微扰级数中最后一项小于前一项。这就是H=H0的明确表示,微扰方法能否应用,不仅决定于微扰的大小,而且决定于微扰的大小,而且还决定于无微扰体系两个能级之间的间距。只有当微扰算符H在两个无微扰体系波函数之间的矩阵元(0)(0)Hkn的绝对值远小于五微扰体系相应的两能级间隔En时,才能用微-Ek扰论来计算。这就是为什么必须要求作微扰计算的能级处于分立谱,因为如果能级En是连续谱,它和相邻的能级的能级间距趋于零,对于除能En外的其他所有能级, 是不可能都被满足的。6 如何在H中划分H0和H十分重要,H0和H取得好,上式不仅可以满足,

11、而且可以使级数收敛的很快,避免了繁长的微扰计算。一般,除了要求的H0本征值和本征函数必须已知外,还可以从体系的对称性及微扰矩阵元是否满足一定的选择定则来考虑划分H0和H。 - 6 - 能量本征函数和本征值的二级修正由相应的一级修正给出,这样我们可以说,微扰论其实也是一种逐步逼近法。 关于l的讨论:由H=H0+lH得出,若设我们将l看成一个可变化的参数,则显然当l当l=0时,H=H0,这时体系未受到微扰的影响;=1时,H=H0+H,微扰全部加进去了。因此、可以想象体系当从l=0缓慢变化到l=1的过程,也就是体系从无微扰的状态逐步变成有微扰的状态的过程。7 1.5海曼费曼定理 设H是l的函数,因此

12、他的本征方程和归一条件为: 由上式得: 上式就是费曼海曼定理,它通过对微扰参数l的积分给出了含微扰的能量和无微扰能量之差。 - 7 - 2 简并定态微扰论 2.1 理论简述: 除一维束缚态外,一般情况下均有简并,因此简并微扰比非简并微扰更具有普遍性,可以说,简并微扰是非简并微扰的特例。 (0)(0)假定H0的第n个能级En有fn度简并,即对应于En有fn个本征函数(0)jnv。与简并微扰不同,现在由于不知道在这fn个本征函数中应该取哪一个作为无微扰本征函数。因此,简并微扰要解决的第一个问题就是:如何适当选择零级波函数进行微扰计算。 设H0的本征方程是: 归一化条件是: H的本征方程是: 由于(

13、0)(0)是完备系,将j按jnv展开后,得: jnv将此式代入上式得: (0)*以jmm左乘上式两端,对全空间进行积分后有: 其中: 按微扰的精神,将H的本征值E和在H0表象中的本征函数Cnv按的幂级数作微扰展开: 再将这两式代入 后得: - 8 - 比较上式给出的两端l的同次幂,给出: l1: l2: 如果讨论的能级是第n个能级,即E0=En(0),由l的0次幂方程式得: 即: am是个待定的常数。再由一级近似下的薛定谔方程得: 在上式中,当m=n,得能级的一级修正E(1)为: 为方便书写起见,略去指标n,记同一能级En中,不同简并态m,n之间的矩阵元Hnm,nn为Hm,n。因此,上式可改写

14、为: 上式是一个以系数an为未知数的线性齐次方程组,它有非零解的条件是其系数行列式为零,即: (1)这是个fn次的久期方程。由这个久期方程可以解出E(1)的fn个根Ena将这fn个根分别代入上个齐次线性方程组式后,可得出相应的fn组解aan,将它们代入(1)后,得出与Ena相应的零级波函数的系数。从而给出零级波函数和能量本征值的一级修正。它们分别是: - 9 - 那么,由上式可知,新的零级波函数实际上是原来相应于第n个能级的各个简并本征函数的线性组合,其组合系数由久期方程决定。一般地,如果久期(1)方程无重根,将求得的Ena代入: 原则上可以求出fn组不同的解aan,那么可以求出fn个零级近似

15、的波函数。8 2.2 简并定态微扰论的讨论 简并来自对守恒量的不完全测量。每一个守恒量对应于一种对(1)称性。若由这个fn次的久期方程解出的Ena无重根,那(0)(0)么,无微扰能级En经微扰后分裂为fn条,它们的波函数由各自对应的fna表示。这时,简并将完全消除,原来带来简并的对称性(0)或守恒量将发生或缺。同理,若Ena有重根,只要不是fn重根,都将部分地消除简并,引起部分对称或缺。9 (0) 经过重新组合后的零级波函数fa彼此互相正交,满足 。 0 在属于En的fn维子空间中,若经过非简并微扰方法重新组合后(0)的fna为基矢,则有: 由上式可知,H在经过非简并微扰方法处理后的简并态构成

16、的子空间中,对应对角矩阵。因此,简并微扰方法的主要精神在于:重新组合简并态的零级波函数,使得H在简并态子空间中对角化。在经过这样的处理后,能量(1)的一级修正Ena(0)Hf0,与非简并微扰的公式完全相同。简并微扰fnana- 10 - 的核心问题在于对简并子空间的基底的选择,在于重新选择零级波函数以使得H在简并子空间对角化,则对角线上的元素就是能量的本征值。若最初的零级的简并波函数本身就能使得H对角化,即 则,由: (1)将得出En。无须再去重新组合零级波函数。简并微扰可类似于非简m=Hmm并微扰的方法处理。10 3 结束语 在量子力学中,由于体系的哈密顿函数比较复杂,往往不能求得准确的解,

17、而只能求得近似解。因此用来求问题的近似解的方法,就显得很重要。那么,在上文,我们分别讨论了非简并定态微扰论和简并定态微扰论,并简单论述了它的理论推导。由此,我们可以得知,近似方法的精神就是从简单问题的精确解出发来求比较复杂的问题的近似解。近似方法除了上文介绍的非简并定态微扰理论和简并定态微扰理论外,还有含时微扰理论和变分法等等。 参考文献 苏如铿量子力学高等教育出版社2002.12 2 周世勋量子力学教程高等教育出版社2009.06 3 曾谨言量子力学卷第4版科学出版社2007.08 4 钱伯初量子力学高等教育出版社2006.01 5 Gennaro Auletta,Fountations a

18、nd Interpretation of Quantum Mechanics,World Scientific Publishing Co.Pte.Ltd,2000. 6 刘觉平 普通高等教育十一五国家级规划教材:量子力学高等教育出版社2012.08 7 张永德. 量子力学.科学出版社(普通高等教育“十五”国家级规划教材).2002.06 8 曾谨言. 量子力学导论. 北京大学出版社出版.1992.06 9 钱伯初,曾谨言. 量子力学习题精选与剖析. 科学出版社出版,XX年第二版。 10 J. W. S. Rayleigh, Theory of Sound, 2nd edition Vol.

19、I, pp 115-118, Macmillan, London (1894) - 11 - A simple discussion of perturbation theory in quantum mechanics Abstract:In quantum mechanics, because the systems Hamiltonian operatorare is complicated, the situation that Schrodingers equation can be solved isexactly few. Therefore, the introduction

20、of various.approximation methods for solving Schrodinger equation problem is something important. Approximate methods commonly are perturbation method, variational method, the semiclassical approximation and the adiabatic approximation and so on. Different approximation methods have different applic

21、ation scope, we willdiscuss the perturbation theory of discrete spectrum below. For Hamiltonian system of not containing time of discrete spectral of perturbation theory and degenerate stationary perturbation theory. Key Words:non degenerate stationary perturbation theory 、 degenerate stationary perturbation theory. - 12 -

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号