《分式方程的增根和无解(精品公开课)课件.pptx》由会员分享,可在线阅读,更多相关《分式方程的增根和无解(精品公开课)课件.pptx(30页珍藏版)》请在三一办公上搜索。
1、一化二解三检验,分式方程,整式方程,a是分式,X=a,a不是分式,去分母,解整式方程,检验,目标,最简公分母不为,最简公分母为,a就是分式方程的增根,解分式方程的一般步骤,知识回顾:,解分式方程,格式该怎么写呢?1、(找最简公分母)方程两边都乘以。,得。2、整理得(或化简得)。3、解这个方程,得。4、检验:把。代入。=。5、(结论)。,解方程:,.,X=1,X=-2,原分式方程的无解,不是分式方程的解,是分式方程的增根,关于分式方程有增根与无解,学习目标:,2.掌握增根与无解有关题型的解题方法;,1.掌握分式方程的增根与无解这两个概念;,例1 解方程:解:方程两边都乘以(x+2)(x-2)得
2、2(x+2)-4x=3(x-2)解之得 x=2 检验:当x=2时(x+2)(x-2)=0 x=是原方程的增根 原方程无解,方程中未知数x的取值范围是x2且x-2去分母后方程中未知数x的取值范围扩大为全体数当求得的x值恰好使最简公分母为零时,x的值就是增根本题中方程的解是x2,恰好使公分母为零,所以x2是原方程的增根,原方程无解,分式方程有增根:,(1)整式方程有解,(2)整式方程的解使最简公分母=0 从而使分时方程产生了增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,扩大了未知数的取值范围产生的未知数的值;从而使分式方程无解。,(3)
3、从而使分式方程无解。,关于分式方程有增根,解关于x的方程 产生增根,求 a,例2,方法:1.化为整式方程。2 有增根使最简公分母为零时,求增根 3.把增根 代入整式方程求出字母的值。,两边乘(x+2)(x-2)化简得 有增根(x+2)(x-2)=0 x=2或x=-2是 的根.当x=2时 2(a-1)=-10,则a=-4.当x=-2时-2(a-1)=-10,解得a=6.a=-4或a=6时.原方程产生增根.,解:变形为:,x=2或x=-2,1、分式方程 有增根,则增根为()A、2 B、-1 C、2或-1 D、无法确定,C,2、若分式方程 有增根,求m的值,3、关于x的分式方程 有增根,求k的值,因
4、增根产生无解。那么无解是否都是由增根造成的?无解和增根一样吗?,例2 解方程:解:去分母后化为x13x2(2x)整理得0 x8因为此方程无解,所以原分式方程无解,分式方程化为整式方程,整式方程本身就无解,当然原分式方程肯定就无解了,分式方程无解不一定是因为产生增根,则是指不论未知数取何值,都不能使方程两边的值等它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解,分式方程无解:,关于分式方程无解,解关于x的方程 无解,求 a。,例3,方法总结:1.化为整式方程.2.把整式方程分两种情况讨论,整
5、式方程无解和整式方程的解为增根.而无解,(例2变式),综上所述:当 a=1或-4或6时原分式方程无解.,两边乘(x+2)(x-2)化简得,原分式方程无解分两种情况:,整式方程无解,当a-1=0时 解得a=1原分式方程无解。,整式方程的解为分式方程的增根时,(x+2)(x-2)=0,x=2或x=-2是 整式方程的根.,当x=2时 2(a-1)=-10,则a=-4,当x=-2时-2(a-1)=-10,解得a=6.,a=-4或a=6时.原方程产生增根.原分式方程无解。,解:变形为:,x=2或x=-2,1、若分式方程 有无解,求m的值,2、关于x的分式方程 有无解,求k的值,3、若分式方程 无 解,则
6、m的取值是()A、-1或 B、C、-1 D、或0,A,4、分式方程 中的一个分 子被污染成了,已知这个方程无解,那么被污染的分子应该是。,(1)方程,有增根,则增根是_,(2),有增根,则增根是_,(3),(4),X=5,X=2,解关于x的方程 产生增根,则常数m的值等于()(A)-2(B)-1(C)1(D)2,当m为何值时,方程 无解?,A,关于分式方程的解的其他情况,若分式方程,的解是正数,求,的取值范围.,例4,方法总结:1.化整式方程求根,且不能是增根.2.根据题意列不等式组.,解得:,且,且x-2 0 x2,解:两边乘(x-2)得:2x+a=-(x-2),例2:k为何值时,关于x的方
7、程,解为正,求k的取值范围?,知识拓展,反思小结1.有关分式方程增根求字母系数的问题:2.有关分式方程无解求字母系数的问题:3.数学思想:,1.如果分式方程 有增根,那么增根可能是_.,2.当m为何值时,方程 会产生增根.,3.,当 堂 检 测,4:关于x的方程,的解是非负数数,求a的取值范围。,作业;,4、若关于x的分式方程 无解,则m=。,6,10,例4:关于x的方程,的解是正数,求a的取值范围。,1、有时候读书是一种巧妙地避开思考的方法。23.3.2223.3.22Wednesday,March 22,20232、阅读一切好书如同和过去最杰出的人谈话。10:49:3710:49:3710
8、:493/22/2023 10:49:37 AM3、越是没有本领的就越加自命不凡。23.3.2210:49:3710:49Mar-2322-Mar-234、越是无能的人,越喜欢挑剔别人的错儿。10:49:3710:49:3710:49Wednesday,March 22,20235、知人者智,自知者明。胜人者有力,自胜者强。23.3.2223.3.2210:49:3710:49:37March 22,20236、意志坚强的人能把世界放在手中像泥块一样任意揉捏。2023年3月22日星期三上午10时49分37秒10:49:3723.3.227、最具挑战性的挑战莫过于提升自我。2023年3月上午10
9、时49分23.3.2210:49March 22,20238、业余生活要有意义,不要越轨。2023年3月22日星期三10时49分37秒10:49:3722 March 20239、一个人即使已登上顶峰,也仍要自强不息。上午10时49分37秒上午10时49分10:49:3723.3.2210、你要做多大的事情,就该承受多大的压力。3/22/2023 10:49:37 AM10:49:372023/3/2211、自己要先看得起自己,别人才会看得起你。3/22/2023 10:49 AM3/22/2023 10:49 AM23.3.2223.3.2212、这一秒不放弃,下一秒就会有希望。22-Mar-2322 March 202323.3.2213、无论才能知识多么卓著,如果缺乏热情,则无异纸上画饼充饥,无补于事。Wednesday,March 22,202322-Mar-2323.3.2214、我只是自己不放过自己而已,现在我不会再逼自己眷恋了。23.3.2210:49:3722 March 202310:49,谢谢大家,