《论文(设计)基于改进地图分治方法的人防警报器选址模型40484.doc》由会员分享,可在线阅读,更多相关《论文(设计)基于改进地图分治方法的人防警报器选址模型40484.doc(7页珍藏版)》请在三一办公上搜索。
1、基于改进地图分治方法的人防警报器选址模型王峰 魏海平 陈长林61363部队 陕西西安 710054 信息工程大学测绘学院 河南郑州 450052 Email:bjzxgsb摘要:人防警报器的科学选址时建设高效可靠人防警报通信网络的关键所在。警报器的选址同诸多公共设施的选址类似,都是基于城市二维地理信息基础上的。地图分治方法在人防警报器选址中有重要的应用。本文对传统地图分治策略进行了改进,建立了基于改进方法的人防警报器选址模型,进行了实验验证。关键词:地图分治 选址模型 人防 警报器Abstract: The Scientific site selection of Civil Air-Defe
2、nce Siren is very crucial for bunilding effect-ive and dependable Civil Air-Defence siren-net. The site selection of siren is Similary to other so-me public establishments, they are all based on two-demention city geographic information. The ues of Map-Partitioning is important in site selection of
3、Civil Air-Defence siren. This paper improv-ed traditional map-partitioning method, then builded site selection model of Civil Air-Defence siren,and testified the improved method.Keywords: map-partitioning; site selection model; Civil Air-Defence; siren1. 引言人民防空警报是战时城市保障人民群众开展防空袭斗争的重要手段之一,担负着迅速、准确地传递
4、和发放防空警报信号任务。平时还可兼负传递和发放防洪、防震、防台风等抵御自然灾害和次生灾害民防的紧急警报任务。建设好人民防空警报建设对加强人民防空战备建设和国家经济建设都具有重要意义。虽然有了符合现代战争要求的新型警报器,但城市警报器选址是否合理,安装高度是否最佳,是整个警报通信网能否提高警报信号报知率、发挥最大效率的关键1。由于现代城市的高速发展,以及历史上警报器选址的不科学等原因,当前很多城市的警报器布设存在覆盖率低,盲区多,警报报知率低的问题,迫切需要提出更加科学合理的警报器选址方案。选址问题在各个专业领域都有涉及,例如无线通讯领域中的警报器选址,超市、物流中心的选址等。但这些问题共同点都
5、是基于城市地理信息基础之上的,需要考察地理信息,并结合本领域的应用需求,得到选址方案,其问题的本质是一种地图分治方法应用。本文在分析传统地图分治策略的基础上,针对其矩形划分方法单一,覆盖率过于重复的不足,对传统地图分治侧率惊醒了改进,提出了基于正六角格网的地图分治策略。2. 地图分治方法的思想基于地图分治的选址算法基本思想是自适应的分治算法,就是应用一定的几何算法对平面地理数据进行规则的几何划分,构成若干个规则几何形状的地理区域,每个区域内有唯一选址目标,该设施可覆盖或影响所对应区域,且在尽可能小的几何尺度下对该区域影响最大,即满足最小-最大策略。本文以人防警报器为例来介绍地图分治策略,并提出
6、改进的方法。2.1 传统地图分治思想传统地图分治策略就是以规则矩形作为划分单元,且矩形定义为包含警报器覆盖范围的最小外接矩形(如图1)。同时,最小外接矩形也保证了满足警报器本身的覆盖范围的要求。在算法中用户可以为警报器指定最大覆盖半径r,方法将在四分矩形的过程中,检查覆盖范围是否至少大r的要求。找到了满足警报器覆盖范围的最小矩形,就可以计算警报器的具体的选址位置2。算法步骤为:(1)获取在平面地图需进行布设的地理范围(选址范围),构成闭合多边形(如图1);(2)在闭合多边形中某确定位置取定一个地理坐标作为初始设置点(图1中P0),且构造其覆盖矩形,并记录。(3)以初始设置点及其覆盖矩形作为起算
7、基准,采用四向邻域或八向邻域法构造衍生设置点几各自的覆盖矩形,同时进行记录;然后又依次为基准依次采用四向或八向邻域构造,在构造的同时与之前已记录矩形进行比较,如果发现新构造矩形已经被记录则不必重复记录。(4)当发现基准矩形与闭合多边形相交,则停止四向邻域或八向邻域构造,并记录被基准矩形裁剪闭合多边形所得到的线段;当判断各个基准矩形与闭合多边形相交后,检查所记录的各裁剪线段是否连续,若连续则判断构成的闭合多边形是否与已知多变形相等;若不连续则查找不连续线段的地理位置进行构造新矩形及设置点;若两多边形不相等则查找新多边形组成边中不在已知多项形上的线段的地理位置继续进行构造,直到新多边形与已知多边形
8、相等为止。 基于几何平面的分治过程是一种自适应的分治过程,采用矩形作为分治的单元,可以在四分矩形时提高算法的效率,降低算法的复杂度,具有快速判断调整的优点。同时无论是闭合平面或者半平面均可进行划分。但对于一个给定的警报器在功率恒定的情况下,其覆盖范围是确定的。实际警报器的覆盖范围是一个类似蜂窝的多边形,或者是一个圆1,覆盖能力是以半径来衡量,决定了警报器发放警报的范围。因此,采用矩形作为分治单元得到的警报器覆盖范围与实际偏差较大,建立的警报布设网络仍旧或盲区多,或重复覆盖率过大。2.2 改进的地图分治方法基于传统地图分治策略中分治单元采用矩形所存在诸多不足,本文提出了改进方案。我们知道,只有三
9、种正多边形可以覆盖一个平面即正三边形、正四边形和正六边形,其中正四边形覆盖对应着方形网格系统4。Rogers曾指出,平面上点的最佳分布是按正六角网格的形式分布。六角网格就是俗称的蜂窝状排列结构。文献1中提到实际中警报器覆盖范围是类似于蜂窝的多边形,因而表现在二维城市地理平面上其最佳覆盖范围形状是接近圆形的蜂窝状多边形,而合理布局的警报器网络应尽可能的覆盖整个城区范围,这里只有正三角格网、正四角格网和正六角格网可以实现。传统地图分治策略建立了正四角格网,与蜂窝状多边形最接近的是正六角网格,所以本文作了改进,采用正六边形作为分治单元建立了覆盖闭合平面的正六角形格网(如图2),每个网格的中心即为设置
10、点,网格面积为其覆盖范围。图2 采用正六角格网的地图分治改进后的地图分治方法算法步骤类似于上面传统地图分治方法的实现过程,只是改进方法是以正六角网格为分治单元进行划分覆盖范围的自适应分治过程。改进方法尽可能降低了设置点的覆盖盲区,大大提高了覆盖率,为城市空间设施的选址提出科学合理的方案。3. 基于改进地图分治方法的人防警报器选址模型前文讨论了在空间选址邻域有重要应用传统的采用正四角格网的地图分治方法思想及算法实现,并针对其不足进行了改进,提出基于正六角格网的地图分治思想及算法。这里以改进后的地图分治方法为指导思想设计出人防警报器布网选址模型。文中建议取定统一功率的电声警报,相同功率的警报器覆盖
11、半径是相等,且电声警报器全向发声无盲区。3.1 建立模型的算法步骤(1)设计空间地理信息数据结构,对城市基础地理信息及已有的人防警报地理信息进行管理和可视化。(2)取定初始警报器的选址位置P0(X0,Y0),及其覆盖半径R,并得到相对应的初始正六角网格S0;进而以初始位置P0及初始正六角网格S0为起算点,进行自适应计算依次得到覆盖整个城区的警报设置点P1,P2,P3,以及相应的正六角网格S1,S2,S3,并将这些结果进行记录和可视化。(3)依次对已设置的警报点Pi(i=1、2、3n)进行判断,检查其选址是否位于采用正六角网格划分的地图分治策略得到设置点;如果不在则得到包含其的正六角网格Si,提
12、出对当前不合理的警报设置点进行纠正的建议,并给出目的位置Pi。(4)步骤(3)结束后,查找所有正六角网格内未布设警报器的设置点进行记录,同时提出补充安装的建议。(5)若城区需布设范围由多个相离的闭合平面构成时,则依次对每个闭合平面重复步骤(2)、(3)来得到覆盖整个城区的警报器设置点。3.2 模型的实验验证以文中提出的基于改进地图分治方法的警报器选址模型为指导,作者在山东省德州市人防地理信息系统中进行了设计实现,按照此模型在德州市了进行了警报器选址布网,并在市人防警报试鸣放过程中发现当前警报覆盖率达到城区的95%,较前大大提高,并且音响报知率也有较大提高(见图3)。图3中警报器覆盖半径为500
13、米,图中白色正六角网格及其对应警报器符号为起始设置点及覆盖范围,红色闭合多边形为城区警报器选址范围。图3 采用基于改进地图分治方法的人防警报器选址模型同时,伴随城市化进程,当城区范围变化时,可不调整模型只需重新输入城区地理范围,设定或不设定初始警报器位置,重新进行城区地图的自适应分治,依然可构成覆盖广,警报报知率高的警报器布设网络。证明本文所设计的基于改进的地图分治方法的人防警报选址模型具有很高的可复用性,应用前景较广。3.3 模型的不足及改进通过跟踪测试、调研、综合分析,笔者发现,尽管按照采用六角格网进行分地图分治方法所建立的人防警报器选址模型,进行城区警报通信网络的布设,但仍存在盲区,某些
14、地域警报保值率仍低于要求。警报器的选址往往不仅需要考虑覆盖范围,同时还要从宏观角度考虑城市地理信息,例如:人口密度,交通道路,地面建筑等。高大建筑物密度增大,遮挡增多,警报鸣放音响传播死角扩大,造成了盲区范围的增大;城市噪声增大,对警报音响产生抵消和干扰作用,人们的抗声噪能力增强等都对警报效果产生了消极的影响;个别警报设置点根据模型推算出的位置位于道路中央,或位于河流中等等,这样对于布设存在难度,需要调整位置,也影响了警报器的报警效果。为实现防空警报无盲区,在警报布点时,要充分利用地形地貌,选择较高建筑物和制高点布点,电动或电声警报设置高度不超过25米30米为宜,并尽量避开主要传播方向上的屏障
15、和风向的影响。对于城市重点防护目标应作为必须设置地点来考虑。相邻二点的覆盖,应适当重叠,以尽可能不出现盲区。在高层建筑、人口密集区交通车辆繁忙区、商业繁华区、战备重点区等噪声较高的地方,可重叠50以保证警报传递效果。4. 结论本文深入分析了传统的地图分治算法,针对其应用于空间选址时所存在的诸多不足,对传统地图分治方法进行了改进,建立了基于改进地图分治方法的人防警报器选址模型,通过试鸣放笔者发现基于改进地图分治方法的人防警报器选址模型所建立的城市人防警报器布设网络警报器覆盖率大大提高,报知效果也有很大改善。另外该模型可复用性强,均可适用于城区发展变化造成变化城区数据,或不同地域的城区数据,对于当
16、前城市人防警报器选址布网有重要的指导意义,有很大的应用前景。对于文中所建立的模型所考虑的影响因素单一,未能完全消除盲区的不足,作者后面将对模型进行进一步改进,将更多于地理相关因素如人口密度、交通路况、典型建筑物等方面纳入模型中来,提高模型的实用性。参考文献1 曹兴华.防空警报建设应考虑的问题J.中国人民防空,2004,2,总第156期:14.2 汪 亮,曾国荪,袁禄来.基于地图划分的选址方法J. 计算机工程与应用, 2007,43(5): 211.3 刘勇奎,邹善举,米守防等.六角网格上的圆与椭圆生成算法J.大连民族学院学报,2002,4(1):1.作者简介: 王峰(1981),男,解放军信息
17、工程大学测绘学院硕士研究生,主要研究领域是地理信息系统开发与应用。联系地址:郑州陇海中路66号测绘学院六系一队更多测绘论文请登录测绘网论文频道查询:http:/ Editors note: Judson Jones is a meteorologist, journalist and photographer. He has freelanced with CNN for four years, covering severe weather from tornadoes to typhoons. Follow him on Twitter: jnjonesjr (CNN) - I will
18、always wonder what it was like to huddle around a shortwave radio and through the crackling static from space hear the faint beeps of the worlds first satellite - Sputnik. I also missed watching Neil Armstrong step foot on the moon and the first space shuttle take off for the stars. Those events wer
19、e way before my time.As a kid, I was fascinated with what goes on in the sky, and when NASA pulled the plug on the shuttle program I was heartbroken. Yet the privatized space race has renewed my childhood dreams to reach for the stars.As a meteorologist, Ive still seen many important weather and spa
20、ce events, but right now, if you were sitting next to me, youd hear my foot tapping rapidly under my desk. Im anxious for the next one: a space capsule hanging from a crane in the New Mexico desert.Its like the set for a George Lucas movie floating to the edge of space.待添加的隐藏文字内容2You and I will have
21、 the chance to watch a man take a leap into an unimaginable free fall from the edge of space - live.The (lack of) air up there Watch man jump from 96,000 feet Tuesday, I sat at work glued to the live stream of the Red Bull Stratos Mission. I watched the balloons positioned at different altitudes in
22、the sky to test the winds, knowing that if they would just line up in a vertical straight line we would be go for launch.I feel this mission was created for me because I am also a journalist and a photographer, but above all I live for taking a leap of faith - the feeling of pushing the envelope int
23、o uncharted territory.The guy who is going to do this, Felix Baumgartner, must have that same feeling, at a level I will never reach. However, it did not stop me from feeling his pain when a gust of swirling wind kicked up and twisted the partially filled balloon that would take him to the upper end
24、 of our atmosphere. As soon as the 40-acre balloon, with skin no thicker than a dry cleaning bag, scraped the ground I knew it was over.How claustrophobia almost grounded supersonic skydiverWith each twist, you could see the wrinkles of disappointment on the face of the current record holder and cap
25、com (capsule communications), Col. Joe Kittinger. He hung his head low in mission control as he told Baumgartner the disappointing news: Mission aborted.The supersonic descent could happen as early as Sunday.The weather plays an important role in this mission. Starting at the ground, conditions have
26、 to be very calm - winds less than 2 mph, with no precipitation or humidity and limited cloud cover. The balloon, with capsule attached, will move through the lower level of the atmosphere (the troposphere) where our day-to-day weather lives. It will climb higher than the tip of Mount Everest (5.5 m
27、iles/8.85 kilometers), drifting even higher than the cruising altitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stratosphere. As he crosses the boundary layer (called the tropopause), he can expect a lot of turbulence.The balloon will slowly drift to the edge of space at 120,
28、000 feet (22.7 miles/36.53 kilometers). Here, Fearless Felix will unclip. He will roll back the door.Then, I would assume, he will slowly step out onto something resembling an Olympic diving platform.Below, the Earth becomes the concrete bottom of a swimming pool that he wants to land on, but not to
29、o hard. Still, hell be traveling fast, so despite the distance, it will not be like diving into the deep end of a pool. It will be like he is diving into the shallow end.Skydiver preps for the big jumpWhen he jumps, he is expected to reach the speed of sound - 690 mph (1,110 kph) - in less than 40 s
30、econds. Like hitting the top of the water, he will begin to slow as he approaches the more dense air closer to Earth. But this will not be enough to stop him completely.If he goes too fast or spins out of control, he has a stabilization parachute that can be deployed to slow him down. His team hopes
31、 its not needed. Instead, he plans to deploy his 270-square-foot (25-square-meter) main chute at an altitude of around 5,000 feet (1,524 meters).In order to deploy this chute successfully, he will have to slow to 172 mph (277 kph). He will have a reserve parachute that will open automatically if he
32、loses consciousness at mach speeds.Even if everything goes as planned, it wont. Baumgartner still will free fall at a speed that would cause you and me to pass out, and no parachute is guaranteed to work higher than 25,000 feet (7,620 meters).It might not be the moon, but Kittinger free fell from 102,800 feet in 1960 - at the dawn of an infamous space race that captured the hearts of many. Baumgartner will attempt to break that record, a feat that boggles the mind. This is one of those monumental moments I will always remember, because there is no way Id miss this.