《深基坑监测总结报告.doc》由会员分享,可在线阅读,更多相关《深基坑监测总结报告.doc(25页珍藏版)》请在三一办公上搜索。
1、第一章 工程概况XX路隧道工程是XX路改造工程的一部分,XX路改造工程由XX路地下通道、两侧排水管道、西广场人行地下通道及雨水泵站组成。XX路地下通道由隧道和引道组成,全长约1000m。隧道为闭合框架结构,采用整板基础,跨度22m,长约540m;引道为钢筋混凝土U型槽或毛石混凝土挡土墙结构,拟采用整板基础,跨度22m,长约460m。排水管道沿道路两侧布置,雨水泵站基底尺寸约9m*8m。本监测项目为对XX路隧道工程深基坑开挖及施工过程进行监测。XX路现状道路宽约60m,道路中设有双向2车道高架桥已于隧道施工前拆除,桥宽10m,全长900m,XX路两侧分布有几个较大的公共场站和车站,路西侧主要有航
2、海长途客运站、XX路西侧公交枢纽;东侧分布有武昌火车站、宏基长途客运站。主要单位有武昌区千家街小学、WW市公共客运交通监察办公室第三管理站、九州饭店、中铁快运公司、七一九研究所等。 图1-1XX路隧道XX路现为进出武昌火车站的唯一道路,其车流量极大,且车行、人行交错,交通极为繁忙。本工程范围内道路沿线现状地下管线较多,有给水、雨水、污水、电力、电信、燃气、有线电视、路灯及交通信号等管线。除电信、电力、部分给水管布置于现状人行道上外,大部分管线布置在车行道下。隧道开挖主要影响的管线有排水箱涵、煤气、给水。人防埋深约9m12m,为钢筋混凝土结构,其净空尺寸为3m2.55m,零散分布,隧道北敞口段东
3、侧分布较多。WW地区属于我国东南季风气候区,具有冬寒夏热,春湿秋旱,四季分明,降水充分冬季少雪等特点,年平均气温16.3度,极端高温41.3度,极端低温-18.0度。地貌单元属长江冲积三级阶地,地区内地势较平坦,局部地段稍有起伏,地面标高在mm之间变化。根据地质报告,本场地主要分布地层有:人工填积Qml和第四系湖塘相沉积(Ql )层、第四系全新统冲积层Q4al、第四系上更新统冲洪积层Q3al+pl、志留系强风化泥岩、石英砂岩。各岩土层具体的分布埋藏条件、野外鉴别特征列于下表:表1-1岩土层性质特征描述表地层编号岩土名称年代成因层顶埋深m层厚m颜色状态湿度压缩性包含物及分布特征土石等级1-1杂填
4、土Qml杂密实干主要有沥青及混凝土组成的地坪、其下夹碎石、片石等,全场区分布。1-2素填土Qml褐黄褐松散稍湿高主要由粘性土组成,夹少量碎石、砂等,场地大部分地段分布。1-3淤泥Ql0.53灰灰黑流软塑湿高含有机质、腐殖质、有臭味,场区局部分布。2-1粉质粘土Q4al25灰褐灰可塑稍湿中高含铁锰氧化物、云母片及白色高岭土条纹,场区局部分布。2-2粉质粘土Q4al0.77灰褐黄褐可塑稍湿中含铁锰氧化物、云母片及白色高岭土条纹,场区部分地段分布。3-1粉质粘土Q3al+pl0.511黄褐硬塑稍湿中偏低含铁锰氧化物及条纹状高岭土,场区绝大部分地段分布。3-1a粉质粘土Q3al+pl1114黄褐可塑稍
5、湿中含铁锰氧化物及白色高岭土条纹,场区局部分布。3-2粉质粘土夹粉土、粉砂Q3al+pl96褐黄可塑很湿中含铁锰氧化物及其结核,混有少量粉土、粉砂,场区大部分地段分布。4粉砂Q3al+pl0.616褐黄中密饱和中含氧化铁、云母片,粘粒含量高,混有少量粉土、粉质粘土,整个场区均有分布。5-1中砂Q3al+pl2137黄中密密实饱和中偏低含云母片及粘性土,局部地段夹砾石,部分钻孔揭露。5-2角砾夹中粗砂Q3al+pl334017黄密实饱和低局部夹少量卵石,部分孔揭露。6卵石夹粗砂砾.4Q3al+pl2943黄密实饱和低卵石成份以砂岩及石英砂岩为主,磨圆度一般,部分孔揭露。7-1粉质粘土Q3pl17
6、8灰褐灰可塑稍湿中偏低仅个别利用孔出现7-2粘土Q3pl+el24251.47褐黄硬塑稍湿低仅个别利用孔出现7-3粘土Q3pl+el25.4354.411灰青灰硬塑坚硬稍湿低仅个别利用孔出现8强风化泥岩、石英砂岩S2f未穿透灰绿黄绿坚硬稍湿低仅利用孔揭露场地各土岩层的承载力特征值及压缩模量等相关设计参数见下表:表1-2承载力及压缩模量地层编号及名称土工试验标准贯入试验综合建议值fak(kPa)Es(MPa)Nfk(kPa)fak(kPa)Es(MPa)2-1粉质粘土104385952-2粉质粘土19881801853-1粉质粘土380153903803-1a粉质粘土2003-2粉质粘土夹粉土粉
7、砂粉质粘土170170粉土172粉砂151804粉砂222102105-1中砂303403405-2角砾夹中粗砂414204206卵石夹粗砂砾480E07-1粉质粘土2507-2粘土4007-3粘土5508强风化泥岩、石英砂岩500E0本场地分布有上层滞水及弱孔隙承压水两种类型地下水。m3.10m之间。弱孔隙承压水主要赋存于4、5、6单元饱和砂类土层中。施工情况XX路地下通道由隧道和引道U型槽及挡土墙组成,隧道设计范围为K0+000K1+003.349,暗埋段宽22m,敞口段宽度从22m渐变。隧道K0+004.15K0+230段长为隧道南敞口段;K0+230K0+770段长540m为隧道暗埋段
8、;K0+770K0+998.85段长为隧道北敞口段。隧道实际全长,其中暗埋段长540m,敞口段。基坑隧道部分支护采用钻孔灌注桩桩+内支撑支护形式,桩间采用喷射混凝土封闭找平,桩顶设冠梁,设1道和2道支撑。基坑开挖深度引道及敞口段07.78m深;暗埋段7.7811.5m深。基坑南北两端引道部分放坡开挖,挡土墙支护。基坑安全等级为二级。XX路隧道施工从2007年6月开始拆除高架桥,8月份开始施工支护桩。期间我们根据支护桩的施工进度开始埋设测斜管、钢筋计和土压力盒。2008年2月份支护桩施工基本完成,开始开挖。期间监测工作根据施工进度布设冠梁位移沉降监测点。并开始布设支撑、立柱、联系梁的应力监测元件
9、。2008年8月份基坑开挖完毕、结构施工完毕,施工方对基坑进行了全面回填。期间监测工作进行各项数据采集、数据处理和编制监测报告工作。基坑回填完毕后,监测工作结束。XX路隧道基坑在K0+150K0+300和K0+460K0+870设置一道钢支撑,在K0+300K0+460设置两道钢支撑。下列图是基坑施工断面图图1-1,断面位于基坑K0+460位置。 图1-1 基坑施工断面图第二章 监测依据和监测方案设计1、深基坑工程技术标准DB42/59-19982、工程测量标准GB50026-933、岩土工程勘察标准GB50021-944、建筑地基基础设计标准GBJ7-895、建筑变形测量标准JBJ/T 8-
10、976、建筑基坑支护技术规程(JGJ120-99)7、公司的管理手册程序文件作业文件8、WW市市政工程设计研究院有限责任公司编写的武昌火车站XX路隧道支护施工图本基坑工程设计基坑安全等级为二级,结合设计规定基坑边坡容许变形值40mm、预警值32mm,确定按照二等变形观测等级进行测量。沉降观测点测站高差中误差mm0.50,位移观测点坐标中误差mm。表2-1仪器投入一览表序号仪器名称厂家及型号精度数量监测项目1全站仪NIKON”1位移2水准仪Leica1沉降3测斜仪航天部33所CX-06A0.1/8(mv/角秒)1桩体深部位移4应力读数仪金坛土木仪器厂1hz1土压力、钢筋计、轴力计XX路隧道工程深
11、基坑呈长条形,分为中铁一局和中铁十一局两个标段进行施工,两个标度的施工进度不同步,根据现场的施工进度依次布设各类观测点。监测工作从2007年9月13日开始安装监测桩的钢筋计、土压力盒和测斜管,共计布设监测桩7个其中1根被破坏,位移、沉降监测点77个,测斜管13根其中5根被破坏,轴力计10组。至2008年8月30日基坑全面回填,基坑监测工作结束时,共进行了50余次观测,提供了44次观测报告。图2-1为基坑平面图。图2-1XX路隧道基坑平面图第三章 监测数据分析桩顶位移监测桩顶的位移和沉降观测,从桩顶冠梁做好时开始进行。水平位移采用坐标法进行观测。施工方先施工基坑两端引道及敞口段,完成并回填后向中
12、部推进。引道及敞口段开挖深度浅,施工进度较快。根据观测结果,该段位移变形较小,加上受到施工条件的限制,后期停止了该段的观测项目。下面我们根据观测数据来对桩顶的位移情况进行说明。图3-1a中铁一局标段桩顶位移曲线图基坑东侧图3-1b中铁一局标段桩顶位移点布置图基坑东侧从图3-1a中可以看出,监测点位移量较小,在开挖初期位移量增长较快,安装支撑后变形速度减小,后期变形平稳,B35正处于两个施工开挖段的分界点,故在开挖后位移量变化较大,同样在此点处支撑安装后变形速率减小到达稳定。对应基坑东侧,基坑西侧的监测点位移变化趋势与东侧相同,但基坑西侧平均位移量9mm小于东侧位移量15mm。见图3-2。图3-
13、2中铁一局标段桩顶位移量基坑西侧基坑东西两侧地质情况相同,开挖支护情况相同。不同的是基坑的东侧紧邻宏基客运站,车流量是基坑西侧的23倍,车流形成的动荷载是东侧位移量大于西侧位移量的主要原因。基坑开挖后期,施工至中铁一局标段和横穿隧道的地铁站交接处,监测点B24B25;B66B67之间的基坑开挖到底,但冠梁和支撑都没有安装。期间我们对此处进行了严密监测,增加了B67-1、B67-2两个观测点。图3-3a悬臂梁段未安装支撑段位移曲线图3-3b悬臂梁段未安装支撑段位移点布置图图3-3a说明,此处监测点位移量最大12.6mm,没有超出报警值32mm,处于安全状态。该段基坑开挖时南北两端已经回填,开挖深
14、度9m,开挖段长度20m。该段支护桩呈悬臂状态,桩顶大部分位移在基坑开挖到底这段时间完成。由于基坑从开挖到底到回填时间较短,所以此处位移量不大,变形稳定。基坑位移变形最大的位置处于中铁十一局标段的基坑东侧,5月10日观测到位移量最大到达34.1mm(B-10)。6月10日位移量最大到达38.0mm(B-13)。图3-4a位移变形最大处基坑位移曲线图图3-4b位移变形最大处基坑位移点布置图B10处基坑开挖深度m,设1道支撑。B13处基坑开挖深度11m,设2道支撑。5月4日该段基坑开挖到底后我们对此处进行了连续观测,该段基坑桩顶位移量呈增大趋势。结合沉降观测数据来看,该处沉降量不大,对应测测斜数据
15、CX01说明,此处深层位移最大发生在m深处23.24mm,测斜曲线没有明显拐点,第一道支撑轴力ZC3受压不大186.19KN,轴力变化没有加剧。综合考虑,我们预计该段基坑在B12处第二道支撑安装完毕后趋于稳定。对此处采取的措施是加强监测频率,同时对施工方提出了防范要求,清除坑周堆载。事实证明,此处监测点在第二道支撑安装完毕后到达稳定。见图3-4a。总体来看,桩顶位移变形量除个别点超出预警值外,大部分点变形量不大,变形速度稳定,基坑边坡没有发生坍塌事故。基坑边坡的安全保证了基坑施工的正常施工,也保证了基坑周边XX路能够顺利通行。桩顶(B13),平均沉降7.7mm,所有观测点的累计沉降值都小于预警
16、值32mm,都在控制范围内,在施工过程中基坑周围地面没有发生过大的地表沉降。随着基坑的开挖,观测点呈下沉趋势,总体态势平稳。图3-5桩顶部分监测点沉降曲线图基坑外道路受到基坑开挖影响较小,由于基坑外道路在基坑开挖后不久进行了道路改造施工,所以监测点被破坏。且基坑外车流人流较大,对观测和路面下沉影响较大,所以道路沉降观测只能作为参考。测斜数据说明,桩身在基坑施工开挖过程中总变形量较小,在基坑开挖初期桩身测斜曲线呈“斜直线形”,到支撑安装后CX1、CX2、CX13逐渐变成“弓形”,说明支撑约束了桩上部设1道支撑,安装在桩顶部冠梁上,使得桩身中部向坑内位移形成“弓形”。CX5、CX6、CX12在整个
17、基坑监测过程中测斜曲线一直为“斜直线形”,说明在此处的基坑边坡依靠悬臂桩可以到达稳定。其中CX2处开挖深度11m,设2道支撑,第1道支撑安装在0.5m深处,第2道支撑安装在7m深处。其它测斜孔处均设1道支撑。下列图列出各孔测斜曲线:图3-6a支护桩测斜曲线图说明:测斜曲线图内:+值方向为基坑内,-值为基坑外。图3-6b支护桩测斜孔位布置图总体来看,基坑支护桩变形正常,没有超出预警值。我们从中可以发现一些规律: CX2分布在中铁十一局标段,开挖深度较深,设两道支撑,测斜曲线呈“弓形”mm)位于6.5m深处;CX5、CX6、CX12分布在中铁一局标段,设置一道支撑,测斜曲线呈“斜直线”mm)位于顶
18、部。结合轴力监测数据,CX2处安装的ZC3轴力计显示出第1道轴力从安装后压力一直在增加,最大增加到213.89KN。支撑起到支点的作用,约束桩体的变形,而使桩体测斜曲线呈“弓形”。而CX5处的ZC11轴力变化平稳,支撑受压力较小53.92KN,对桩顶的约束不够,使得桩体变形呈“斜直线形”。:从轴力观测数据来看,支撑轴力在支撑安装后呈增加趋势,基坑开挖到底后轴力增加到峰值,然后支撑轴力呈下降趋势。轴力观测数据说明:支撑轴力变化正常,没有超出预警值。下面为各轴力变化曲线图:图3-7 ZC3轴力曲线图受拉“+”;受压“-”图3-8 ZC4轴力曲线图受拉“+”;受压“-”图3-9 ZC11轴力曲线图受
19、拉“+”;受压“-”图3-10 ZC13轴力曲线图受拉“+”;受压“-”从图中可以看出,支撑呈受压状态,立柱一般呈受压状态,联系梁受拉或受压没有明显规律。图3-11 各支撑轴力比较图受拉“+”;受压“-”从图中可以看出,不同位置的轴力受力状态差异很大,其中ZC5受力最大1236.75KN,ZC6、ZC7受压力较大400800KN,其他支撑受压力较小0300KN,原因为ZC5处基坑挖深最深11m,变形较大B16,37.2mm。支撑受力随工况变化较明显,例如支撑ZC3安装时,桩顶位移量mmB10,随着桩顶位移量增大到mm,轴力从KN增大到KN。之后桩顶位移,轴力平稳。轴力与位移量之间关系呈正比。5
20、月10日后支撑开始逐步拆除,在支撑拆除期间,轴力变化很不稳定。但此时基坑大部分已经回填,支撑拆除对桩顶位移量影响不大。桩身钢筋应力变化监测说明:支护桩的钢筋受到的应力不大,且变化平稳,施工过程中没有出现桩身被拉断、拉弯的现象。以68#桩为例:68#桩身在迎土侧3m深、6m深、9m深处主筋安装了3支钢筋计和3支土压力盒。在基坑侧3m深、6m深、9m深处主筋对应安装了3支钢筋计。桩身应力变化量较小最大值7.39KN,在基坑施工开挖过程中比较平稳,在基坑施工后期,受到支撑拆除影响,3m深处的钢筋应力变化幅度较大。图3-12a 测试桩布置平面图图3-12b 68#桩身基坑侧应力曲线图图3-12c 68
21、#桩身迎土侧应力曲线图从图中可以看出,3m、6m钢筋均受压,而9m处钢筋受拉,说明桩身存在反弯点,位于6m9m之间。68#桩处开挖深度为7.1m,桩长设计为11m。其意义在于支护桩的临界深度为9m,9m以下支护桩部分作用较小。通过对基坑侧和临土侧的应力变化比较,发现支护桩的受力在同一深度基坑侧和临土侧的受力正好相反,分别为压应力和拉应力,随深度变化不大。见图3-13、图3-14。图3-13迎土侧钢筋应力-深度曲线 图3-14迎土侧钢筋应力-深度曲线总体来看,监测结果说明:支护桩钢筋每根受拉、压力在+8KN-8KN之间,小于设计允许值150KN,且变化稳定,说明桩身安全稳定。在基坑开挖过程中,土
22、压力变化比较稳定。下列图是土压力随时间变化曲线:图3-15 68#桩后土压力变化曲线图3-16 143#桩后土压力变化曲线图3-17 41#桩后土压力变化曲线从图中可以看出:在整个基坑开挖过程中,土压力较小且变化不明显,总体呈减小趋势。图3-18 68#桩后土压力-深度曲线从图中可以看出,土压力最大的部位在8m深处,桩侧顶部和底部土压力较小,随着基坑的开挖呈土压力呈增大趋势,但变化均匀,变化量不大。综合看来,桩后土压力正常,符合土压力变化规律。3.7监测汇总表3-1基坑监测最大值统计表:观测项目累计最大量预警值容许值备注位移监测,(B16)32mm40mm预警沉降监测,B1332mm40mm正
23、常测斜监测,(CX2)32mm40mm正常应力监测最大压力89.21KN,(143#) 正常轴力监测最大1121.84,ZC5正常土压力土压力最大0.07Mpa,(143#)正常从表中可以看出,除个别位移监测数据超出预警值,其他监测数据均小于预警值,基坑监测数据说明:基坑的设计和施工均满足了基坑自身安全和环境安全。从监测过程中,监测数据对施工起到了指导和建议作用,充分发挥了监测的作用。第四章 监测数据处理系统和预警处理系统针对于本基坑,我们开发了一套基坑监测数据处理系统,系统平台采用.net平台,编成语言为VBA,数据库为SQLserver2000。项目管理系统常用工作报表系统维护数据输出输入
24、模块管理数据备份管理数据安全设置工程管理工程基本信息参数管理数据处理公式预警参数管理作业管理位移观测沉降观测应力观测轴力观测水位观测等等报表管理生成报表报表预处理监测说明输出打印变形观测数据处理系统图4-1变形数据处理系统树形图该系统在数据处理和检索方面别具优势,集合了多项监测项目的数据处理功能,包括对位移基准点联测、沉降观测数据的平差处理,在处理应力观测项目可以根据设定值来剔除粗差。数据检索可以使用日期和点名来组合调用,系统处理数据效率高,对电脑配置要求不高,在本监测工程中承担了整个数据处理任务。施 工监控量测监测设计资料调研量测结果的微机信息处理系统量测结果的综合处理及反分析监测结果的综合
25、评价报送设计、监理单位量测结果的形象化、具体化经验类比理论分析甲方、标准要求等结构稳定、安全性判断预测下个施工阶段的支护结构、周边建筑、管线的安全性,提交修正施工建议YN反馈设计施工是否改变设计、施工方法调整设计参数、改变施工方法或辅助施工措施新设计施工方法图4-2 监测反馈程序框图监测数据超过预警值仅仅代表结构出现不安全的苗头或趋势,并不代表结构部安全,需要采取相应的工程措施。为了明确结构是否安全,分析造成不安全趋势的原因,拟定保证工程安全的施工措施,需要对监测数据进行进一步的进行分析,预测结构下一个施工阶段的变形与内力变化情况,判断结构是否安全,对改变施工工艺与流程后的结构响应进行反馈。为
26、此本项目将进一步采用以下技术手段进行数据分析、结构安全性预测:(1)监测数据的时程分析,即在取得监测数据后,要及时整理,绘制位移或应力的时态变化曲线图,即时态散点图,在时态散点图上分析结构变形、沉降、应力是收敛还是发散。(2)基于监测数据的结构安全性预测。在取得足够的数据后,还应根据散点图的数据分布状况,选择合适的函数,对监测结果进行回归分析,以预测该测点可能出现的最大位移值或应力值,预测结构和建筑物在下一个施工阶段的安全状况。(3)基于监测数据、理论分析模型、结构相应的联合分析预测。由于在本监测系统中埋设了桩后土压力、桩身应力、支撑轴力测点,可以动态了解周围土体对桩的作用,因而可以利用实测的
27、外力作用计算桩的变形与应力变化情况,同时可以将计算结果与预测结果、实测结果进行比较,从而了解支护桩的实际性能,为分析支护桩的安全形态提供依据。第五章 监测工作评述从监测各项统计数据可知,基坑变形均在允许值范围内。至基坑回填完毕,基坑支护结构和基坑周边环境均没有发生任何过大的位移和沉降。总体来讲,基坑变形在施工期间是正常稳定的,本基坑的支护设计和施工是安全合理的。本着为服务工程、验证设计的监测理念,我们通过各种监测手段对基坑进行量测,量测的范围包括基坑冠梁的倾斜和变形、围护桩的受力变化、支撑的受力变化、基坑周边建筑物、管线变形等等,手段主要包括位移、沉降、轴力、土压力、测斜、钢筋应力等等,依据是监测数据、各项极限值、发展趋势。量测结果及时反馈施工方,当变形量或变形速率过大时,及时分析原因,提出预警,有利于施工单位及时采取一定措施控制变形,到达安全的目的。在监测过程中,还根据监测成果优化设计,在一定程度上为施工单位节约了工程成本和工期。监测元件的保护和施工单位作业层面对监测重要性的认识是需要提高的,部分监测点在施工过程中被破坏,监测元件存活率在80%左右。感谢甲方WW市两站办的信任和支持,也感谢XXX和XXX给予的便利和帮助。