《毕业设计加热炉参数检测和炉温控制系统设计.doc》由会员分享,可在线阅读,更多相关《毕业设计加热炉参数检测和炉温控制系统设计.doc(60页珍藏版)》请在三一办公上搜索。
1、 毕 业 设 计(论文)题 目: 加热炉多参数检测和炉温控制技术 学 院: 电气与电子信息工程学院 专业名称: 应用电子技术 学 号: 0630210110 学生姓名: 王 有 敏 指导教师: 胡 蔷 2009年 5月10日摘 要在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。其中,温度控制也越来越重要。在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。因此,单片机对温度的控制问题是
2、一个工业生产中经常会遇到的控制问题。 单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可实现对数字信息的处理和控制。因此,单片机广泛用于现代工业控制中。 本论文侧重介绍“单片机温度控制系统”的软件设计及相关内容。论文的主要内容包括:采样、滤波、键盘、LED显示系统,加热控制系统,单片机MCS-51的开发以及系统应用软件开发等。作为控制系统中的一个典型实验设计,单片机温度控制系统综合运用了微机原理、自动控制原理、模拟电子技术、数字控制技术、键盘显示技术等诸多方面的知识,是对所学知识的一次综合测试。关键词:MCS-51;8051;温度控制;PID
3、ABSTRACTWith scientific constant progress, in industrial production, electric current, voltage, temperature, pressure are mainly commonly used. especially in the heat treatment industry, the accurate test and controlling of temperature is very important. In a lot of fields, for example: In metallurg
4、ical industry, chemical production, power engineering, machine manufactures, food processing, family and industry heat etc. people need to heating furnace, heat-treatment furnace and all kinds of response stove and boiler temperature measure and control, through software design, to reach the intelli
5、gent control finally and realize the interactive function.Adopt Single-Chip Microcomputer is it control convenient, simple, flexibility advantage such as being heavy to have not merely to control to go on to temperature to come, and can raise by technical indicator not to accuse of temperature by a
6、large margin, thus can big improvement quality and the quantity of products. So the control problem to the temperature of Single-Chip Microcomputer is the control problem constantly be able to encounter in the industry manufacture.This thesis introduces the design and debugging of “the temperature c
7、ontrol system by microcomputer”. As a typical experimental design in control system, it uses much control knowledge and comprehensively tests students ability in control system.The content of this thesis mainly includes: introduces, filtering ware, keyboard, man-computer dialogue supported by LED in
8、dication, heat control method, the development of micro-computer MCS-51 and systemic applied software. Key words:MCS-51, 8051, temperature control, PID目 录第一章 绪论11.1 概述11.2 课题分析11.3 设计思路2第二章 MCS-51单片机的基本知识42.1 MCS-51单片机的结构42.2 8051存储器配置52.3 定时器及其应用82.4 本章小结9第三章 采样与滤波103.1 采样103.1.1 ADC0809的主要功能103.1.
9、2 逐次逼近式转换原理113.2 数字滤波113.2.1 硬件滤波器113.2.2 数字滤波器123.3 可控硅143.3.1 可控硅的结构143.3.2 可控硅的基本特性143.4 本章小结15第四章 控制系统的算法164.1 PID控制的离散化164.2 PID位置式算法174.3 PID的增量式算法184.4 PID算法的改进184.4.1 积分分离PID控制算法194.4.2 不完全微分PID算法204.4.3 微分先行PID算法214.4.4 带死区的PID控制224.5 PID控制器的参数整定224.6 Smith 预估器的补偿原理264.7 数字Smith预估系统284.8 本章
10、小结30第五章 系统程序设计315.1 主程序315.2 键盘扫描及显示程序325.3 T0中断服务程序335.4 子程序345.4.1 采样子程序SAMP345.4.2 数字滤波子程序FILTER365.4.3 PID计算子程序365.5系统调试37 5.5.1硬件调试37 5.5.2软件调试38 5.6 本章小结39结束语40参考文献41致 谢42第一章 绪论1.1 概述随着现代工业的逐步发展,在工业生产中,温度、压力、流量和液位是四种最常见的过程变量。其中,温度是一个非常重要的过程变量。例如:在冶金工业、化工工业、电力工业、机械加工和食品加工等许多领域,都需要对各种加热炉、热处理炉、反应
11、炉和锅炉的温度进行控制。然而,用常规的控制方法,潜力是有限的,难以满足较高的性能要求。采用单片机来对它们进行控制不仅具有控制方便、简单和灵活性大的优点,而且可以大幅度提高被测温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。1.2 课题分析单片机温度控制系统,是利用单片机作为系统的主控制器,测量电路中的温度反馈信号经A/D变换后,送入单片机中进行处理,经过一定的算法后,单片机的输出用来控制可控硅的通断,控制加热炉的输出功率,从而实现对温度的控制。本单片机温度控制系统的具体指标要求是,对加热器加热温度调整范围为6001000,温度
12、控制精度小于3,系统的超调量须小于15%。软件设计须能进行人机对话,考虑到本系统控制对象为电炉,是一个大延迟环节,且温度调节范围较宽,所以本系统对过渡过程时间不予要求。单片机是一种集CPU、RAM、ROM、I/O接口和中断系统于一体的器件,只需要外加电源和晶振就可以实现对数字信号的处理和控制。本设计运用MCS-51系列单片集中的8051单片机为主控制器,对加热炉的温度进行智能化控制,最终通过软件设计来实现人机对话功能,实现对加热炉的温度控制。本论文主要介绍单片机温度控制系统,内容主要包括:采样、滤波、键盘显示、加热控制系统,单片机MCS-51的开发及系统应用软件的开发等。全文共分五章。第一章绪
13、论介绍课题背景、目的、意义及设计的总体思路。第二章介绍主控电路核心部分MCS-51单片机8051的基本结构和配置。第三章介绍A/D采样技术和数字滤波技术。第四章介绍以PID为主的温度控制算法及系统加热控制系统。第五章主要是系统软件编程。1.3 设计思路根据系统具体指标要求,可以对每一个具体部分进行分析设计。整个控制系统分为硬件电路设计和软件程序设计两部分。硬件电路见附录。分析硬件电路主要包括:加热及控制电路部分,数据采集和模/数(A/D)转换处理部分,键盘和显示器部分,单片机与各部分的接口处理部分。这些可用一个方框图来表示,如图1-1所示,显然,这是一个典型的单反馈控制系统。图 1-1 单片机
14、温度控制系统框图从框图上我们可以看出,整个系统也可划分为控制电路部分、加热电路部分和测量电路三部分。控制电路是由单片机来处理给定信号和反馈信号,发出相应的指令来控制可控硅,是系统的核心。8051对温度的控制是通过可控硅调功能电路实现的。在给定的周期T内,8051只要改变可控硅管的接通时间便可改变加热丝的功率,从而达到调节温度的目的。而可控硅的接通时间可以通过可控硅极上触发脉冲控制。该触发脉冲由8051用软件在P1.3引脚上产生,受过零同步脉冲同步后经光耦合管和驱动管输出送到可控硅的控制极上。过零同步脉冲是一种50HZ交流电压过零时刻的脉冲,可使可控硅在交流电压正弦波过零时触发导通。该脉冲一方面
15、作为可控硅的触发同步脉冲加到控制电路中,另一方面还作为计数脉冲加到8051的T0和T1端。加热电路用来实现对系统的升温加热达到预定的温度。当温度没有达到要求,控制电路利用双向可控硅的通断特性来决定加热电路的通电与断电。测量电路功能为将测量到的信号经过处理变成数字信号送入单片机中进行处理。主要由温度检测和变送器组成。温度检测元件和变送器的类型选择和被控温度及精度等级有关。镍络/镍铝热电偶(2001000)适用于01000的温度测量范围,相应输出电压为0mV41.32mV。变送器由毫伏变送器和电流/电压变送器组成:毫伏变送器用于把热点偶输出的0mV41.32mV变换成0 mA10 mA范围内的电流
16、;电流/电压变送器用于把毫伏变送器输出的0 mA10 mA电流变换成0 V5V范围内的电压。 为了提高测量精度,变送器可以进行零点漂移。本次设计的温度控制范围为6001000之间,温度误差要求在3左右,系统超调量不超过15%,采用8位转换器ADC0809就可以使温度误差保持在2.34以内,满足设计要求。除上述电路,8051还要有81552732和ADC0809等芯片接口电路。其中8155用于键盘/LED显示器接口,2732可以作为8051的外部ROM存储器,ADC0809为温度测量电路的输入接口,用于把连续变化的信号进行离散化。最终再通过控制电路中的键盘显示器电路实现人机对话功能。软件设计主要
17、由温度控制的算法和温度控制程序组成。软件设计主要为控制器部分,即温度控制系统,采用PID算法,其原理是先求出实测炉温对所需炉温的偏差值,而后对偏差值处理而获得控制信号去调节加热炉的加热功率,以实现对炉温的控制。PID基本可满足系统要求。程序设计是本次设计的核心部分。整个程序包括管理程序和控制程序两部分。管理程序是对显示LED进行动态刷新,控制指示灯,处理键盘的扫描和响应,进行掉电保护,执行中断服务程序等。控制程序是用来对被控进行采样,数据处理,根据控制算法进行计算和输出等。第二章 MCS-51单片机的基本知识AT89C2051单片机简介AT89C2051是美国ATMEI公司生产的低电压,高性能
18、的8位单片机,片内含2k bytes的可反复电擦除FLASH程序存器和128 bytes的随机存取的数据存储器RAM。器件采用ATMEI公司高密度、非易失性存储技术生产,与标准的MCS-51指令系统及产品引脚兼容,但去除了P0口、P2口和ALE、引脚,所以不能并行扩展总线,为非总线型单片机。其主要的内部资源有:与MCS-51产品指令和引脚完全兼容2k字节可重擦写FLASH闪速存储器全静态操作:024MHZ2级加密程序存储器1288字节内部RAM2个精密模拟比较器15个可编程I/O口线2个16位定时/计数器5个中断源1个可编程串行UART通道低功耗空闲和掉电模式AT89C2051的引脚图如图3-
19、1所示,其引脚定义如下: 图3-1 AT89C52引脚图1、Vcc:,电源电压。2、GND:接地。3、P1口:P1口是一个8位双向I/O口。其中P1.0、P1.1是片内精密模拟比较器的同相输入端和反向输入端,P3.6固定用于该比较器的输出端(P3.6对外无引脚,不可作I/O口访问)。当不用该模拟比较器时,P1.0、P1.1经外接上拉电阻后,也可作为普通I/O口使用。P1.2P1.7为普通I/O口,内部已接上拉电阻。4、P3口:P3口是一组带有内部上拉电阻的8位双向I/O口。但由于P3.6口固定用作片内精密模拟比较器的输出端,对外无引脚,所以真正可作为I/O口用的只有7个。除了作为一般的I/O口
20、外,更重要的用途是它的第二功能,如下所示:端口引脚第二功能P3.0RXD(串行输入口)P3.1TXD(串行输出口)P3.2INT0(外中断0)P3.3INT1(外中断1)P3.4T0(定时/计数器0)P3.5T1(定时/计数器1)5、RST:复位输入,当振荡器工作时,RST引脚出现两个周期以上高电平将使单片机复位。6、XTAL1、 XTAL2:晶体振荡电路反相输入端和输出端。使用内部振荡电路时外接石英晶体;外振荡输入时,XTAL1接地,XTAL2接外部振荡脉冲。单片机系统结构单片机是由运算器、控制器、存储器、输入设备以及输出设备共五个基本部分组成的。单片机是把包括运算器、控制器、少量的存储器、
21、最基本的输入输出口电路、串行口电路、中断和定时电路等都集成在一个尺寸有限的芯片上。MCS-51单片机芯片内部逻辑结构通过MCS-51单片机内部的逻辑结构图掌握单片机内部的逻辑结构及各个部件的功能与特点。即:中央处理器(CPU)、内部数据存储器、内部程序存储器、定时器/计数器、并行I/O口、串行口、中断控制系统、时钟电路、位处理器、总线。MCS-51单片机的内部存储器MCS-51单片机芯片内部有数据存储器和程序存储器两类存储器,即所谓的内部RAM和内部ROM。同学重点要掌握内部数据存储器的结构、用途、地址分配和使用特点。一是内部数据存储器的低128单元,它包括了寄存器区、位寻址区、用户RAM区,
22、要掌握这些单元的地址分配、作用等。二是内部数据存储器高128单元,这是为专用寄存器提供的,地址范围为80HFFH。所谓专用寄存器是区别于通用寄存器而言的,即这些寄存器的功能或用途已作了专门的规定,用于存放单片机相应部件的控制命令、状态或数据等。在这些专用寄存器中,重点要掌握以下寄存器的使用: 程序计数器、累加器A、B寄存器、程序状态字(PSW)、数据指针(DPTR)。MCS-51的堆栈操作:堆栈是计算机的重要概念,要掌握以下几方面:1. 堆栈的功用2. 堆栈的设置3. 堆栈指示器4. 堆栈使用方式内部程序存储器80C51芯片内有4K ROM存储单元,其地址为0000H0FFFH,这就是我们所说
23、的内部程序存储器(或简称“内部ROM”)。无论是片内或是片外存储器(对于无片内ROM的单片机),在程序存储器中有一组特殊的保留单元0000H002AH,使用时应特别注意。 系统的启动单元:0000H0002H五个中断源的中断地址区:0003H002AH0003H000AH 外部中断0中断地址区000BH0012H 定时器/计数器0中断地址区0013H001AH 外部中断1中断地址区001BH0022H 定时器/计数器1中断地址区0023H002AH 串行中断地址区中断响应后,系统能按中断种类,自动转到各中断区的首地址去执行程序。因此在中断地址区中本应存放中断服务程序。但通常情况下,8个单元难以
24、存下一个完整的中断服务程序,因此一般也是从中断地址区首地址开始存放一条无条件转移指令,以便中断响应后,通过中断地址区,再转到中断服务程序的实际入口地址去。 MCS-51单片机系统的存储器结构特点单片机的存储器结构有两个重要的特点:一是把数据存储器和程序存储器截然分开,二是存储器有内外之分。总的来说,由芯片内存储器和芯片外扩展存储器构成了单片机应用系统的整个存储器系统。MCS-51单片机并行输入/输出口电路单片机芯片内还有一项重要内容就是并行I/O口电路。MCS-51共有四个8位的并行双向I/O口,分别记作P0、P1、P2、P3,实际上它们已被归入专用寄存器之列。这四个口除了按字节寻址之外,还可
25、以按位寻址,四个口合在一起共有32位。在单片机中,口是一个集数据输入缓冲、数据输出驱动及锁存等多项功能于一体的I/O电路。MCS-51的四个口在电路结构上是基本相同的,但它们又各具特点,因此在功能和使用上各口之间有一定的差异。在学习中必须要掌握各个口的用途。MCS-51单片机时钟电路与时序时钟电路用于产生单片机工作所需要的时钟信号,单片机本身就是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号控制下严格地按时序进行工作。而时序所研究的则是指令执行中各信号之间的相互时间关系。要理解时钟电路的产生与作用,能根据外部所加入的晶体的振荡频率计算时序的定时单位。1. MCS-5
26、1的外部晶体的振荡频率范围:1.2MHz12MHz,2. MCS-51时序的定时单位共有4个,依次是:拍节、状态、机器周期和指令周期。第三章 采样和滤波数字滤波器(digital filter)是由数字乘法器、加法器和延时单元组成的一种装置。其功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。由于电子计算机技术和大规模集成电路的发展,数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。数字滤波器是一个离 散时间系统(按预定的算法,将输入离散时间信号转换为所要求的输出离散时间信号的特定功能装置)。应用数字滤波器处理模拟信号时,首先须对输入模拟信号进行限带、抽样和
27、模数转换。数字滤波器输入信号的抽样率应大于被处理信号带宽的两倍,其频率响应具有以抽样频率为间隔的周期重复特性,且以折叠频率即12抽样频率点呈镜像对称。为得到模拟信号,数字滤波器处理的输出数字信号须经数模转换、平滑。数字滤波器具有高精度、高可靠性、可程控改变特性或复用、便于集成等优点。数字滤波器在语言信号处理、图像信号处理、医学生物信号处理以及其他应用领域都得到了广泛应用。数字滤波器有低通、高通、带通、带阻和全通等类型。它可以是时不变的或时变的、因果的或非因果的、线性的或非线性的。应用最广的是线性、时不变数字滤波器.通带和阻带间给出了一个过渡带,以使幅度平滑地从通带下降到阻带在通带内:1-p|G
28、(ej)| 1+p |p在阻带内: |G(ej)|s s|频率p称为通带截止频率频率s称为阻带截止频率p 和s称为峰波纹值在0间讨论问题数字滤波器的频率响应G(ej)是的周期函数实系数数字滤波的幅度响应是的偶函数因此可以在0内讨论数字滤波器即可峰值通带波纹p和最小阻带衰减s一、 硬件系统介绍1.1 系统框图 系统硬件框图如图2.1所示。主要由A/D转换、FPGA、存储器和转换四部分组成。1.2部分芯片介绍一个电路的性能与元器件的选择是密切相关的,下面将从控制芯片、存储器、转换和转换四个方面介绍系统硬件设计。数字信号处理芯片,我们选用采用Xilinx公司的XC2S50型号的FPGA芯片。用FPG
29、A进行数据采集存储的有以下优点:(1)FPGA采取 有多少数据转换芯片用多少控制单元模块的策略,功能控制模块与数据转换芯片是一一对应的关系,在硬件上保证了数据采集的完全并行性;(2)XC2S50芯 片内有RAM块,可以设计为数据缓冲,方便解决数据流阻塞的问题;(3)FPGA芯片读写速度较高,在采集和存储速度都上不会存在任何问题; (4)FPGA的设计采用在线编程的方式进行,修改和调试都相当快捷、方便;(5)FPGA的外围电路除了一块配置芯片外,不再需要其他任何外围器件,集 成度高,可靠性强。对于A/D和D/A转换芯片,我们选用高精度的16位转换芯片ADS8402和MAX5631,有利于提高所测
30、数据的精度。1.3 硬件工作过程传感器采集的模拟信号,经过ADS8402芯片以后转换为数字信号,将数字信号输入FPGA芯片中,FPGA芯片采用IIR数字滤波算法对输入信号 进行处理,将处理后的信号一方面可以通过数字接口进行传输,另一方面可以经AD变换以模拟量的形式输出,通过前后输出和输入信号的对比,我们就可以直观的 分析滤波效果。二、 IIR数字滤波器的原理和设计数字滤波器是实现数字滤波的核心器件,按类型分为2大类:无限冲激响应 IIR和有限冲激响应FIR数字滤波器。IIR数字滤波器在很多领域中有着广阔的应用前景,与FIR数字滤波器相比,它可以用较低的阶数获得高选择性,所 要求的阶用存储单元少
31、,且成本低、信号延迟小,同时还可以利用模拟滤波器设计成果,设计工作量相对较小。2.1 IIR 数字滤波器的结构高阶IIR滤波器可通过传递函数, 表示为:(3.1-1)由于高阶IIR滤波器可以用若干个二阶网络级联起来构成。对于每一个二阶基本节,它可以用转置直接II型结构加以实现, 如图3.1所示。图 3.1标准二阶部分的转换2.2 滤波器系数的计算该系统的设计指标为:模拟信号采样频率为2MHZ,每周期最少采样20点,即模拟信号的通带边缘频率为fp = 100KHZ,阻带边缘频率fs = 1MHz,通带波动RP不大于0.1dB(通带误差不大于5%),阻带衰减AS不小于32dB。本系统函数H(z)的
32、计算采用MATLAB软件中数字信号处理工具箱比较方便,其中有两个现成的函数可以使用:ellipord(Fp/,Fs /,Rp,As)函数用来计算数字椭圆滤波器的阶次N和3dB截止频率Fn,而 ellip(N,Rp,As,Fn)函数可以求得直接型椭圆IIR滤波器的各个系数。利用MATLAB软件进行计算,可得:b =(0.0271 -0.0724 0.0984 -0.0724 0.0271),a =(1.0000 -3.3553 4.3439 -2.5578 0.5771)。通过调用以上两个函数计算得到的系统函数 :(2.2-1) 上面的式子是直接型结构,它的实现需用的乘法器和延迟单元相对较多,而
33、且分子和分母的系数相差较大,需要较多的二进制位数才能实现相应的精度要求。 如果采用二阶节级联实现,一来各个基本节的零点、极点可以很方便地单独进行调整,二来可以降低对二进制数位数的要求。下面给出了一个直接型结构转为级联型 结构的 文件,即利用b0,b,a=dir2cas(b,a) ,可得b0 = 0.0271。对该系数进行合理安排后可得式(3.2-2):为了使设计简便以及资源得充分利用,我们应该对系数进行进一步的量化,将系数由小数转化为整数,根据需要主要考虑量化精度和系统资源两方面,将二阶网络的系数同时扩大N倍后作为新的系数,然后再将输出网络的系数缩小N倍,并用二进制数进行表示图1 可控硅等效图
34、解图当 阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极 电流ic2=2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流 ic1=1ib1=12ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅 使饱和导通。由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,
35、所以这种可控硅是不可关断的。由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1表1 可控硅导通和关断条件状态条件说明从关断到导通1、阳极电位高于是阴极电位2、控制极有足够的正向电压和电流两者缺一不可维持导通1、阳极电位高于阴极电位2、阳极电流大于维持电流两者缺一不可从导通到关断1、阳极电位低于阴极电位2、阳极电流小于维持电流任一条件即可2、基本伏安特性可控硅的基本伏安特性见图2图2 可控硅基本伏安特性(1)反向特性当 控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J
36、1结的雪崩击穿电压 后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击 穿。图3 阳极加反向电压(2)正向特性当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压图4 阳极加正向电压由 于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。进入N1区的电子与由P1
37、 区通过J1结注入N1区的空穴复合,同样,进入P2区的空穴与由N2区通过J3结注入P2区的电子复合,雪崩击穿,进入N1区的电子与进入P2区的空穴各 自不能全部复合掉,这样,在N1区就有电子积累,在P2区就有空穴积累,结果使P2区的电位升高,N1区的电位下降,J2结变成正偏,只要电流稍增加,电 压便迅速下降,出现所谓负阻特性,见图3的虚线AB段。这时J1、J2、J3三个结均处于正偏,可控硅便进入正向导电状态-通态,此时,它的特性与普通的PN结正向特性相似,见图2中的BC段3、触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT
38、。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。第四章 控制系统的算法用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其他技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象或不能通过有效的测量手段来获得系统参
39、数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制 :比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。积分(I)控制 :在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统
40、,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作
41、用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。微分(D)控制 :在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“
42、项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。 微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零
43、。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器5、PID控制器的参数整定 PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入