毕业设计(论文)基于单片机的太阳能热水器中央控制器的设计与实现.doc

上传人:文库蛋蛋多 文档编号:3980451 上传时间:2023-03-30 格式:DOC 页数:50 大小:708.50KB
返回 下载 相关 举报
毕业设计(论文)基于单片机的太阳能热水器中央控制器的设计与实现.doc_第1页
第1页 / 共50页
毕业设计(论文)基于单片机的太阳能热水器中央控制器的设计与实现.doc_第2页
第2页 / 共50页
毕业设计(论文)基于单片机的太阳能热水器中央控制器的设计与实现.doc_第3页
第3页 / 共50页
毕业设计(论文)基于单片机的太阳能热水器中央控制器的设计与实现.doc_第4页
第4页 / 共50页
毕业设计(论文)基于单片机的太阳能热水器中央控制器的设计与实现.doc_第5页
第5页 / 共50页
点击查看更多>>
资源描述

《毕业设计(论文)基于单片机的太阳能热水器中央控制器的设计与实现.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)基于单片机的太阳能热水器中央控制器的设计与实现.doc(50页珍藏版)》请在三一办公上搜索。

1、中华人民共和国教育部 毕 业 设 计 论文题目:太阳能热水器中央控制器的设计与实现 学 生: 指导教师: 学 院: 专 业: 2007年6月摘 要当今计算机技术在飞速发展,微机应用日益普及深入,微机在通信自动化、工业自动控制、电子测量、信息管理和信息系统等方面得到广泛的应用。嵌入式计算机系统是以应用为中心,以计算机技术为基础,软、硬件可裁剪,适应应用系统对功能,可靠性,成本,体积,功效等严格要求的专业计算机系统。其最初应用是基于单片机的。单片机小巧灵活,成本低,易于产品化。它面向控制,能针对性的解决从简单到复杂的各种控制任务。目前,国内的太阳能热水器还处于研发阶段,这种控制器只具有温度和水位的

2、显示功能,不具有温度控制功能。由于加热时间不能控制而导致过烧,从而浪费大量电能。本设计是以89c51单片机为检测控制中心,采用ds12887实时时钟,实现了温度,水位,时间三种参数的实时显示功能。关键词:单片机;太阳能热水器;智能控制;水位;温度;时间; The Design and realization of the Solar-powered water heaters central controller AbstractToday the computer technology is developed quickly.The microcomputer is increasingl

3、y used widely.目 录摘要Abstract第1章 绪论1 1.1 目前太阳能热水器的研发面临的问题1第二章 系统总体设计方案2 2.1 系统任务和功能2 2.2 AT89C51功能和特点3 2.3 通用四运算放大器 LM3245 2.3.1 LM324作反相交流放大器6 2.3.2 LM324作测温电路6 2.4 DS18B20 数字式温度传感器72.4.1 DS18B20与单片机的典型接口设计8 2.5 锁存器 LM37310 2.6 I/O接口电路8255A11第三章 太阳能热水器中央控制器的硬件设计14 3.1 前端的模拟电路设计14 3.1.1 温度传感器的选用16 3.1

4、.2 DS18B20与单片机的典型接口16 3.2 8255A与单片机的典型接口设计17 3.2.1 ADC0809与89C51单片机的接口设计17 3.3 键盘和显示器接口设计18 3.3.1 键盘工作原理18 3.3.2 LED显示器工作原理20 3.3.3 接口芯片的选择及其原理203.4 单片机复位电路的设计223.5 单片机时钟电路的设计24 3.6 系统原理综述25第四章 太阳能热水器中央控制器的软件设计27 4.1 系统总体软件设计27 4.2 数据采集软件设计27 4.2.1 中断服务子程序27 4.2.2 水位检测子程序29 4.3 显示和键盘软件设计304.3.1 动态显示

5、子程序设计304.3.2 键盘子程序设计32第五章 抗干扰技术设计34 5.1 主要抗干扰技术34 5.2 提高系统抗干扰能力的主要方法34第六章 结论37参考文献附录致谢太阳能热水器中央控制器的设计与实现第一章 绪论当今计算机技术在飞速发展,微机应用日益普及深入,微机在通信自动化、工业自动控制、电子测量、信息管理和信息系统等方面得到广泛的应用。嵌入式计算机系统是以应用为中心,以计算机技术为基础,软、硬件可裁剪,适应应用系统对功能,可靠性,成本,体积,功效等严格要求的专业计算机系统。其最初应用是基于单片机的。单片机小巧灵活,成本低,易于产品化。它面向控制,能针对性的解决从简单到复杂的各种控制任

6、务。单片机具有体积小,功耗低,价格便宜等优点,近年来还开发了一些以单片机母片为核,在片中嵌入更多的专用型单片机,因此单片机在计算机控制领域中应用越来越广泛。单片机的应用意义不仅限于它的广泛及所带来的巨大的经济效益。更重要的是在于单片机的应用正是从根本上改变着传统的控制系统设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分功能,现在已能使用单片机通过软件的方法实现。这种以软件取代硬件并提高系统性能的控制技术,称之为微控制技术。微控制技术标志着一种全新概念的出现,是对传统控制技术的一次革命。随着单片机应用的推广和普及,微控制技术必将不断发展,日益完善。作为目前炙手可热的太阳能热水器,以其

7、智能化和人工化为其显著特点。其中就是以单片机为中央处理器核心,完成了诸多的功能,发挥了至关重要的作用。1.1 目前太阳能热水器的研发面临的问题 太阳能热水器使用方便,节能,无污染,普及推广迅速。目前市场上太阳能热水器的控制系统大部分都存在着或多或少的缺点:功能单一、操作复杂、控制不方便等。随着人们生活水平的提高和电子技术的发展,这样的太阳能热水器控制系统越来越不适应人们的生活需求,开发一种控制方便,操作灵活的太阳能热水器的控制系统,已经成为当务之急。本文设计了一种以单片机AT89C51 为核心,显示直观,操作方便,控制灵活的控制器。第二章 系统总体方案设计随着计算机在各种智能控制系统应用中的不

8、断深入与蓬勃发展, 单片机更以其小巧的外形、较高的性价比、灵活的控制方式广泛地应用在这一领域。文章所介绍的太阳能热水器自动控制系统, 将低价位的单片机引入太阳能热水器中, 以单片机作为核心部件,实时采集温度和水位数据, 并设置报警系统,当水位不符合某一标准时发出报警信号,还有定时提醒加水的电路。本系统实现了多重功能的有机结合和智能控制。2.1 系统任务和功能(1) 多点水温水位输入及显示功能。(2) 辅助能源加热控制功能: 定时加热、自动加热控制。(3) 上水控制功能: 自动上水、定温上水控制。(4) 报警控制功能: 高、低温及高、低水位报警控制。(5) 检测控制功能: 手动输出检查。 图一系

9、统结构图2.2 AT89C51结构和特点AT89C51采用美国ATMEL公司生产的高性能八位单片机。内置2KBEPROM的20脚AT89C2051以及内置1KBEPROM的20脚AT89C1051。AT89C51是一种低损耗、高性能、CMOS八位微处理器AT89C51结构和功能:1特点:AT89C51与MCS51系列的单片机在指令系统和引脚上完全兼容;片内有4K字节在线可重复编程快擦写程序存储器;全静态工作,工作范围:0Hz24MHz;三级程序存储器加密;1288位内部RAM ;32位双向输入输出线;两个十六位定时器/计数器;五个中断源,两级中断优先级;一个全双工的异步串行口;间歇和掉电工作方

10、式。2管脚功能:AT89C51单片机为40引脚芯片如图2-2所示。1) I/O口线:P0、P1、P2、P3共四个口P0口是三态双向口,通称数据总线口,因为只有该口能直接用于对外部存储器的读/写操作。P0口也用以输出外部存储器的低8位地址。由于是分时输出,故应在外部加锁存器将此地址数据锁存,地址锁存信号用ALE的P1口是专门供用户使用的I/O口,是准双向口。P2口是从系统扩展时作高8位地址线用。不扩展外部存储器时,P2口也可以作为用户I/O口线使用,P2口也是准双向口。P3口是双功能口,该口的每一位均可独立地定义为第一I/O功能或第二I/O功能。作为第一功能使用时操作同P1 口。P3口的第二功能

11、如表2-1所示。2) 控制口线:PSEN (片外取控制)、ALE( 地址锁存控制)、EA (片外储器选择)、RESET (复位控制)。3) 电源及时钟:VCC、GND、XTAL1、XTAL2。AT89C51有间歇和掉电两种工作模式。间歇模式是由软件来设置的,当外围器件仍然处于工作状态时,CPU可根据工作情况适时地进入睡眠状态,内部RAM和所有特殊的寄存器值将保持不变。这种状态可被任何一个中断所终止或通过硬件复位。掉电模式是VCC电压低于电源下限,振荡器停振,CPU停止执行指令。该芯片内RAM和特殊功能寄存器值保持不变,直到掉电模式被终止。只有VCC电压恢复到正常工作范围而且在振荡器稳定振荡后,

12、通过硬件复位掉电模式可被终止。图2-2 AT89C51管脚图表2-1 P3双功能口功能表第一功能标记第二功能P3.0RXD串行输入口P3.1TXD串行输出口P3. 2INT0外部中断0输入P3. 3INT1外部中断1输入P3. 4T0定时/计时器0外部输入P3. 5T1定时/计时器0外部输入P3. 6WD外部数据存储器写选通P3. 7RD外部数据存储器读选通89C51单片机的中断系统有5个中断请求源,用户可以用软件屏蔽所有的中断请求,也可以用软件使CPU接收中断请求,每一中断源可用软件独立地控制为开中断或关中断。当所有中断源设为开中断时,89C51中的中断源优先级如表2-2所示:表2-2 中断

13、优先级及入口地址中断源优先级人口地址外部中断010003H定时器/计数器T02000BH外部中断130013H定时器/计数器T04001BH串行口中断50023H2.3 通用四运算放大器LM324LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。每一组运算放大器可用图2.1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相

14、输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的 引脚排列见图2.2(图表2.1) ( 图表2.2) 2.3.1 LM324作反相交流放大器电路见附图2.11。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。 (图2.11) 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值, Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。2.3.

15、2 LM324应用作测温电路感温探头采用一只硅三极管3DG6,把它接成二极管形式。硅晶体管发射结电压的温度系数约为-2.5mV/,即温度每上升1度,发射结电压变会下降2.5mV。运放A1连接成同相直流放大形式,温度越高,晶体管BG1压降越小,运放A1同相输入端的电压就越低,输出端的电压也越低。图2.21这是一个线性放大过程。在A1输出端接上测量或处理电路,便可对温度进行指示或进行其它自动控制。2.4 DS18B20数字式温度传感器DS18B20内部结构图 3.3所示,主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如图 3.4所

16、示,DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地,见图 3.9)。存储和控制逻辑64位ROM和一线端口温度传感器高温触发器高速存储器低温触发器8位CRC生成器配置寄存器供电方式 图 3.3 DS18B20内部结构图 3.4 DS18B20封装形式2.41 DS18B20与单片机的典型接口设计DS18B20、 DS1822 “一线总线”数字化温度传感器是DALLAS最新单线数字温度传感器, 同DS1820一样,DS18B20也 支持“一线总线”接口,测量温度范围为 -55C+125C,在-10+85C范围内,精度为0.5C。DS1822的精度较

17、差为 2C 。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,与前一代产品不同,新的产品支持3V5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。2.5锁存器74LS373 74LS373是一种8D锁存器,具有三态驱动输出,其引脚电路图如下:ZHHHLLLLLLLLHLHHHLQnDnLEOE.引脚图中Dn-输入端;Qn-输出端;、LE为控制端,该片如何工作由功能表定,表中L为低电平、H为高电平、Z为高阻抗(相当开路)为任意电平,一般将 接低电平,LE接ALE就能正常工作。2.6 I/O接口电路8255A(1)总线接口

18、部分/CS A1、A0 /RD /WR 片选线端口选择线(选片内四个端口寄存器)读信号线 写信号线 输入(2)内部逻辑部分(3)外设接口部分可由编程决定三个端口的功能输入 输出 其它A口8位锁存 / 缓冲8位锁存双向B口 8位锁存 / 缓冲8位锁存C口8位锁存 / 缓冲8位锁存可分成两组分别作A口、B口的选通联络线2、8255A的端口操作A1A0选中0 0 PA口0 1 PB口1 0 PC口1 1 控制寄存器二、8255A的工作方式及方式选择1、8255A的工作方式(1)方式0 基本输入/输出方式A口、B口、C口均有此方式,无选通, 是单片机与外部设备之间的直接数据通道。(2)方式1 选通输入

19、/输出方式仅PA口、PB口有此方式,PC口中若干位作联络信号线。 各联络信号线的意义:/STB IBF INTR INTE /OBF /ACK 输入选通信号,外设发来。输入缓冲器满信号,发给外设(通知外设数据未被取走,暂不能接收新数据)中断请求信号,外部设备发给单片机 中断允许信号 输出缓冲器满信号,发给外设(单片机将数据已送到指定口,外部设备可以取走) 外设响应信号,由外部设备发来(数据已送到外部设备) (3)方式3 双向方式仅PA口有此方式。PC3 PC7作联络线此时,PB口可以是方式0;也可以是方式1(PC0 PC1作联络线)。2、8255A的方式控制字用编程方法向8255A的控制口写控

20、制字,可决定它的工作方式。有两个控制字:(1)方式选择控制字“1”方式控制标志位D6、D5决定A组的工作方式,0 0 方式00 1 方式11 方式2D4 A口的传输方向,1 入,0 出。D3 PC7 PC4的传输方向,1 入,0 出。D2 决定B组的工作方式,0 方式0,1 方式1。D1 B口的传输方向,1 入,0 出。D0 PC3 PC0传输方向,1 入,0 出。(2)PC口置位/复位控制字“0” 标志位。D6、D5 不使用位。D3、D2、D1 位选择位,000 111 分别对应PC7 PC0。D0 位状态位,1 置位,0 复位。3 太阳能热水器中央控制器的硬件设计3.1 前端模拟电路设计3

21、.1.1 温度传感器选用本系统采用接触式温度传感器DS18B20。DS18B20、 DS1822 “一线总线”数字化温度传感器是DALLAS最新单线数字温度传感器, 同DS1820一样,DS18B20也 支持“一线总线”接口,测量温度范围为 -55C+125C,在-10+85C范围内,精度为0.5C。DS1822的精度较差为 2C 。3.1.2 DS18B20与单片机的典型接口设计可以采用外接电源与寄生电源供电(就是供电电源从数据线上得到): 图 3.8 外接电源供电图3.9 寄生电源供电 3.2 8255A与单片机的接口电路设计3.2.1 ADC0809与89C51单片机的接口设计ADC08

22、09是美国国家半导体公司生产的CMOS工艺8通道,8位逐次逼近式A/D模数转换器。89C51与ADC0809接口电路图如图3-3所示。将ADC0809作为外扩的并行I/O口,由P2.7和WR端的脉冲同时有效时启动A/D转换,通道选择端与A、B、C分别与地址线A0、A1、A2相连。其端口地址为7FF8H7FFFH。A/D转换结束后,EOC向89C51的INT1端输入一个高电平,既向单片机产生一个外部中断1信号。. 图3-3 ADC0809与89C51的中断方式原理图3.3 键盘和显示器接口设计3.3.1 键盘工作原理3键盘在单片机应用系统中能实现向单片机输入数据、传送命令等功能,是人工干预单片机

23、的主要手段。键盘输入应解决的问题1键盘输入的特点键盘的实质是一组开关的集合。3键盘接口的工作原理常见的键盘接口分为独立式键盘接口和矩阵式键盘接口两种。本系统采用矩阵式键盘接口。图3-4 矩阵式4*4键盘原理图1)矩阵式键盘接口的工作原理按键设置在行、列线的交叉点上,行、列线分别连接开关的两端。行线通过上拉电阻接到正+5V。平时无按键时,行线处于高电平状态,而当有按键按下时,行线电平状态键由此行线相连的列电平决定。列线如果为低电平,这行线电平为低;列线电平如果为高,则行线电平也高。这是识别矩阵键盘按键是否被按下的关键所在。由于矩阵键盘中行、列线为多键共用,各按键均影响该键所在的电平。因此各按键彼

24、此间互相发生影响,所以必须将行、列线信号配合起来并作适当的处理,才能确定闭合键的位置。3.3.3 键盘/显示电路系统键盘显示接口采用8279芯片,用硬件完成键盘与显示器扫描4。键盘由0-9数字键,报警值设定键,时钟设定键,左位移键,确认键,运行键等组成,采用44键盘。用户可以通过键盘完成人机接口的各种操作。键盘以中断方式工作。当有按键时,8279申请中断CPU响应中断后转入键盘监控处理程序。显示器采用4个LED数码管,系统检测数据经AT89C51单片机处理后通过I/O口送到驱动电路8279与单片机AT89C51的硬件接口电路图如图3-13所示。8279芯片外接48键盘和4位显示器,工作于4位显

25、示和键盘输入工作方式,均为编码扫描,其组成可分为三个部分:图3-6 8279芯片与单片机AT89C51的硬件接口电路图1显示接口:由4个7段LED显示器组成。SL0-SL2经74LS138(1)译码低四位扫描控制位选口,显示字符的段选码由8279芯片的一个4位输出口OUB0-3同步输出实现,并且经74LS06非门轮流驱动7段LED显示器。消隐显示信号输出线与74LS138(1)的使能端E3相连,当显示功换时,输出低电平关闭74LS138(1),从而达到显示消隐的目的。2键盘接口:16个键排成4行4列的矩阵。8279工作于键盘输入方式,4根列扫描线由SL0-SL7经74LS138(2)译码获得,

26、只用其中的四根,4根行信号线由RL0,RL1,RL2,RL3引入。由于8279的输入线RL0-RL7内部有上位电阻,当无键按下时均为高电平,而当有键按下时则被键盘上的按键拉成低电平,该键的行、列号信息被读人FIFO RAM缓冲器中。同时8279的中断请求信号IRQ为高电平,可向CPU申请中断,读取键值代码。38279与AT89C51的接口:在硬件连线图中,单片机AT89C51的P2.7脚经反向器接片选信号CS。8279的A0端用于控制读写命令/状态和数据,A0与地址锁存器74LS373输出的最低位地址线AB0相接,所以8279的数据口地址为8FFEH,命令/状态口地址为8FFFH。8279的C

27、NTL、SHIFT引脚接地。3.4 单片机复位电路的设计复位是单片机的初始化操作。其主要功能是把程序计数器PC值初始化为0000H,使单片机从0000H单元开始执行程序。除了进入系统的正常初始化之外,程序运行出错或操作错误使系统处于死锁状态时,为摆脱困境,也需要按复位键重新启动单片机。RST引脚是复位信号的输入端,高电平有效,其有效时间应持续24个震荡周期(即两个机器周期)以上。若使频率为6MHZ的晶振,则复位信号持续时间超过4s才能完成复位操作。复位操作由上电复位和按键手动复为两种方式。上电自动复位是通过外部复位电路的电容充电来实现的,其电路如图3-7所示。只要电源VCC的上电时间不超过1m

28、s,就可以实现自动上电复位,即接通电源就完成了系统的复位初始化。按键手动复位分为电平方式和脉冲方式两种。其中,电平复位是复位端通过电阻与Vcc电源接通而实现的。脉冲复位是利用RC微分电路产生的正脉冲来实现的。在计算机测控系统中,为了保证微处理器稳定而可靠地运行,需要配置电压监控电路;为了实现掉电数据保护,需备用电池及切换电路;为了使微处理器尽快摆脱因干扰而陷入的死循环,需要配置看门狗电路,将完成这些功能的电路集成在一起的芯片中称为微处理器监控器。图3-7 单片机系统复位电路在单片机系统中,为了摆脱“死循环”通常采用“看门狗技术”也就是程序监控技术。“看门狗”技术就是不断监视程序循环运行时间,若

29、发现时间超过已知的循环设定时间,则认为系统陷入了“死循环”,。本系统采用美国MAXIM公司的处理器监控器MAX690A完成硬件“看门狗”电路。MAX690A具有以下功能:(1)在微处理器上电、掉电及低压供电时,产生一个复位输出信号。 (2)具有备用电池切换电路,备用电池可供给其他低功耗逻辑电路。(3)具有看门狗电路,该电路的触发脉冲时间间隔超过1.6s时,将产生一个复位输出。(4)可用于低电压检测。MAX690A的主要电气参数为:工作电压 Vcc(1.25.5V);静态电流200A ;备用电池方式静态电流50A;复位脉冲宽度 TRS为200ms;看门狗定时时间为1.6s;复位门限电平4.65V

30、。MAX690A与89C51单片机的接口电路如图3-8所示:图3-8 MAX690A与89C51的接口电路本电路有复位电路和看门狗电路功能,R1、R2选取说明如下: (3-1)当R1=1k,R2=2.6 k,使+5V电压跌落到4.5V,PFI的输出电压低于1.25V时,PFO输出高电平作为单片机的中断信号。单片机正常工作时,P1.0口定期(小于1.6 s)改变WDI输入端的电平,使看门狗电路不发出复位电路。当出现“死机”,单片机将不能定期改变WDI电平,看门狗电路便会在1.6 s后产生一个复位信号,使单片机复位,待经过200ms复位脉冲宽后,单片机复位结束,程序从0000H开始重新执行,保证了

31、系统的正常运转。本系统采用内部时钟方式。89C51单片机内部有一个用于构成振荡器的高增益反相放大器,用于构成振荡器。反相放大器的输入端为XTAL1,输出端为XTAL2,分别是89C51的19脚和18脚。在XTAL1和XTAL2两端跨接石英晶体及两个电容就可以构成稳定的自激振荡器。89C51内部时钟方式的振荡电路如图3-9所示。晶体的振荡频率范围通常在1.2MHz到24MHz 之间。晶体的频率越高,则系统的频率越高单片机的运行速度越快。本系统选择振荡频率为24MHz的石英晶体。图3-9 AT89C51内部时钟方式电路3.6 系统原理综述系统硬件原理如原理图(附)所示。通过原理图,我们可以分析出系

32、统的原理,于是系统主要原理如下:温度的测量通过温度传感器输出正比于不同温度的电压值来实现,在和8255A接口相连的pc中,通过二极管分别显示四个不同的水位情况。通过两个按键s2和s3来实现加热和加水的功能,当s2按下时,就触发外部中断0,进入中断子程序,执行加热功能。当s3按下时,就出发了外部中断1进入中断子程序,执行手动加水功能。 单片机通过P0口用一个8255A扩展芯片实现8位LED显示,Po口和373相连锁存地址信号,P2.0P2.3和水位检测传感器接口电路连接,P2.6和P2.7分别接有加水继电器和加热继电器。作为8255A的PC口接有6个二极管,分别用来显示水位1、2、3、4状态,还

33、有加水状态和加热状态的提示信号。再通过接口电路8255A反映到显示屏上。单片机其余I/O口线安排:VCC:接+5V电源。GND:接地。RST:接MAX690A的RESET。P3.0(ALE):与8255H的ALE脚相连提供时钟信号。XTAL1、XTAL2:通过晶振实现单片机内部时钟。 PSEN:允许程序存储器输出控制端。EA:内外程序存储器选择控制端。P1.7:接MAX960的WDI端。RD:接8255H的RD端。WR:接8255H的WR端。4太阳能热水器中央控制器的软件设计在完成太阳能热水器中央控制器的硬件设计后,要达到系统设计需求,用单片机实现自动控制,就需要进行软件设计。同时运用软件设计

34、可以相对地简化硬件结构,有效地降低设计成本并提高系统的性能。根据系统设计要求,软件设计应具备以下功能: 对水的温度数据的读入; 对数码管显示子程序的实现; 通过键盘输入实现数据采集; 将数据存入EPROM中实现掉电保护; 将采集到的数据通过LED显示。4.1 系统总体软件设计本系统主要是完成由89C51为核心控制器来实现对太阳能热水器水位和水温的检测,并在适当的时候报警,并把温度数据体现在8位数码管上。主程序首先完成对串口,定时器,中断源的初始化设置,初始运行参数,开中断,然后循环读取键盘状态,检测系统是否漏电。一旦检测到系统漏电,立即进行声音和显示报警,并切断所有执行机构电源;若系统不漏电,

35、则根据存储的键盘状态和检测的水温,水位等状态信号进行相应的处理并等待中断服务程序的执行。其主要的软件原理图如图1和2。系统正常控制时,首先显示水温和水位,若检测到水流开关打开用水时,自动断开上水阀和电加热体电源,即实现水电联动,用水停电。当检测到水位过低时,控制单片机在8255A的PC3口的二极管提示加水,然后手动加水。达到最高水位时同样提醒停止加水。在水位超过第二档时,将检测到的实际水温和设置水温进行比较,若实际水温低于设置水温时,则加热体通电进行辅助电加热;若水温高于设置水温时,切断加热体电源;若检测到水位低档,不管温度设置高低,总是停止加热,防止加热体干烧,在加热功能中将最高水温控制在适

36、当的温度,超温时停止加热并报警。图一系统主程序流程图4.2 数据采集软件设计4.2.1中断服务子程序开始关中断保护现场,关闭电磁阀将P3口的内容读入水位寄存器SW1中,其地址位0A0H将SW1中的内容进行处理,得出水位检测结果入SW2调用水位处理子程序置P3.4口为第二功能启动计数器T0并延时从计数器T0中读取V/F 的转换结果,并存入WD中调用温度算法子程序调显示子程序恢复现场开中断中断返回4.2.2水位检测子程序现场保护取水位结果是低水位是中水位是次高水位是高水位无水位显示指针偏移量置为04H显示指针偏移量为03H显示指针偏移量置为02H显示指针偏移量置为01H显示指针偏移量置为00H启动

37、电磁阀显示缓冲区地址偏移显示段码地址将显示内容放入寄存器wx中恢复现场返回4.3显示和键盘软件设计当要进行显示和软件设计时,单片机首先要通过P2.7端向8155H的CE端输出一个高电平,选中8155H。4.3.1 动态显示程序设计在AT89C51内部的RAM中设置4个显示缓冲单元79H7CH,分别存放显示器的4位数据,8155H的PA口扫描输出总是只有一位高电平,即显示器的4位中仅有一位公共阴极为低电平,其它位高电平,8155H的PB口输出相应位(阴极为低)的显示字形的断码,使其一位显示出一个字符,其它位为暗,依次改变PA 口输出为高的位,PB口输出对应的段码,显示器的四位就动态地显示出由缓冲

38、区中显示数据所得字符 18 。其显示流程如图4-3所示。图4-3动态显示程序流程图4.3.2 键盘子程序设计当键盘无键输入时,8155H的PC0到3口不全为1,只有当键盘有键输入时PC 0-3 口全为1 时,向单片机提出外部中断申请,单片机响应中断请求,由外部中断0的中断服务程序将输入的键号存入模拟通道指针R7,从而使系统采集键号所代表的模拟通道的量,并将其值通过LED显示出来。 其键盘产生外部中断时的中断服务程序流程图如图4-4所示。 通过延时子程序达到去键盘抖动的目的,并将所输入键的键号存入模拟通道选择指针R7中。中断结束后,返回主程序。从而实现通过按键选择模拟通道,并采集相应通道的数据。

39、此外采集到的数据还需存入单片机片内的EPROM内,防止单片机突然掉电造成采集到的数据丢失。图4-4 键盘中断服务程序5 抗干扰技术设计单片机测控系统体积小、价格低、功能灵活、使用方便,已在工业领域中得到广泛应用,单片机系统越来越受到人们的关注。单片机系统的可靠性是由多种的,其中系统的抗干扰性能的好坏是影响系统可靠性的重要因素。因此,研究抗干扰技术,对保证单片机测控系统稳定 、可靠的工作是非常必要的。一般把影响单片机测控系统正常工作的信号称为噪音,又称干扰。环境对单片机系统得干扰一般都是以脉冲的形式进入系统的,干扰窜入单片机的渠道主要有三条:1空间干扰。2供电系统干扰。3过程通道干扰。5.1 主

40、要抗干扰技术20提高单片机系统的技术措施有降低单片机的频率,时钟监测电路、看门狗技术与低电压复位技术等技术。外时钟是高频的噪声源,除能引起对本应用系统的干扰之外,还可能产生对外界的干扰,使电磁兼容检测不能达标。在对系统可靠性要求很高的应用系统中,选用频率低的单片机是降低系统噪声的原则之一。监测系统时钟,当发现系统时钟停振时产生系统复位信号以恢复系统时钟,是单片机提高系统可靠性的措施之一。而时钟监控有效与省电指令STOP是一对矛盾。只能使用其中之一。看门狗技术是监测应用程序中的一段定时中断服务程序的运行状况,当这段程序不工作时判断为系统故障,从而产生系统复位。低电压复位技术是监测单片机电源电压,

41、当电压低于某一值时产生复位信号。由于单片机技术的发展,单片机本身对电源电压范围的要求越来越宽。电源电压从当初的5V降至3.3V并继续下降到2.7V、2.2V、1.8V。在是否使用低电压复位功能时应根据具体应用情况权衡一下。5.2 提高单片机系统抗干扰能力的主要方法 提高单片机抗干扰能力的主要方法有接地,隔离与屏蔽和滤波。接地指接大地,也称作保护地。为单片机系统提供良好的地线,对提高系统的抗干扰能力极为有益。特别是对有防雷击要求的系统,良好的接地至关重要。系统运用一系列抗干扰元件,目的在于将雷击、浪涌式干扰以及快脉冲群干扰去除,而去除的方法都是将干扰引入大地,如果系统不接地,或者虽有地线但接地电阻过大,则这些元件都不能发挥作用。为单片机供电的电源的地俗称逻辑地,它们和大地的关系可以相通、浮空、或接一电阻,要视应用场合而定。不能把地线随便接在暖气管子上。绝对不能把接地线与动力线

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号