《论文(设计)基于小波变换的数字滤波算法.doc》由会员分享,可在线阅读,更多相关《论文(设计)基于小波变换的数字滤波算法.doc(7页珍藏版)》请在三一办公上搜索。
1、基于小波变换的数字滤波算法张玉春1,杨成峰2,马振霞3,王文娟4(1.国电南思系统控制有限公司,江苏 南京211153;2.东南大学电气工程学院,江苏 南京 210096;3.伊川二电厂,河南 洛阳 471300;4.郑州热电厂,河南 郑州 450003)摘要:基于紧支撑正交小波变换理论和多分辨率分析特性的应用研究,提出了信号的数字滤波的算法方案,并通过仿真对算法进行了验证和比较,仿真分析表明基于小波变换的滤波方案,能够有效地滤除衰减直流分量、噪声、频率波动和非整次谐波的影响。关键词:小波变换, 数字滤波,多分辨率分析, 算法Digital filtering arithmetic based
2、 on wavelet transformZHANG Yu-chun1, YANG Cheng-feng2, MA Zhen-xia 3, WANG Wen-juan 41.SP-Nice System Control Co.Ltd., Nanjing 211153, China;2.Southeast University, Nanjing 210096, China;3. Yichuan Second Power Plant,Luoyang,471300,China;4. Heat and Power Plant of Zhengzhou, Zhengzhou, 450003, China
3、)Abstract:Based on application study of close support cross wavelet transform theory and its multi-resolution analysis characteristic, the digital filtering arithmetic for signal is put forward. The arithmetic is validated and analyzed by simulation. The simulation and analysis results prove that th
4、e digital filtering arithmetic based on wavelet transform is capable of filtering direct current component, noise, frequency jitter and non-integer order harmonic efficiently.Keywords:Wavelet Transform, Digital Filtering, Multi-Resolution Analysis ,Arithmetic1绪论在微机保护装置中,数字滤波是非常重要的环节,尤其在故障暂态当中,信号通常含有
5、大量的谐波,而且被分析对象已不是稳态,而是暂态的非周期性的波形,仍采用间断频谱的傅氏级数分析方法是不合适的。小波分析是一个新的数学分支,是一种十分有效的时频分析工具,其最突出的特点是:它在时域和频域同时具有良好的局部化性质以及多分辨率分析(Multi-Resolution Analysis)的特点。它采用的是不同尺度的分析方法,在信号的不同部位得到最佳的时域分辨率和频域分辨率,为非平稳信号的分析提供了一条新的途径。多分辨率分析能够以不同的层次显示信号的特征,其实质就是把信号在一系列不同层次的空间上进行分解的方法1。这种分解能将各种交织在一起的不同频率组成的混合信号分解成不同频带的子信号,因而能
6、有效地应用于信噪分离、编码解码、模式识别等问题。因此,将小波分析技术应用于信号的数字滤波以及算法分析,可实现谐波分量的有效分离,有望进一步提高滤波以及保护算法精度和抗干扰性能,大大增进微机保护的性能。正是在这种意义下,小波变换被誉为数字显微镜,成为分析非平稳变化或具有奇异性的故障信号强有力的分析手段,在信号分析处理,滤波以及边缘检测等领域得到了成功的应用2。2数字滤波电压、电流信号经过保护装置的电流互感器和电压互感器变换成电压信号后,一般先要经过模拟低通滤波器进行滤波,保护装置对输入信号进行采样保持和A/D转化后,一般还要经过数字滤波3。设置在采样前的模拟低通滤波器主要是为了防止频率混叠,其截
7、至频率一般较高。数字滤波器在继电保护中是一个重要环节,因为在电力系统正常运行时,就常有奇次谐波,主要为3次及5次谐波,在短路事故过程中,除了有非周期衰减的直流分量外,还由于线路分布电容的影响,产生暂态的高频分量。为了消除上述谐波及分量对继电保护的影响,保护中必须考虑滤波措施。数字滤波实质上就是一种算法,它的输入是一组经过量化的采样值X(k),输出是经过变换或处理的另外一组数值量Y(k)。数字滤波器的作用就是从X(k)序列中提取有用信息Y(k),而将无用的成分去掉或尽可能的衰减。在微机保护装置中一般都是通过程序即软件来实现数字滤波器。它有许多突出的优点:(1)精度高,不存在与负载阻抗匹配的问题,
8、只要有足够的字长位数,就能够提高数字滤波的精度,扩大动态范围;(2)可靠性高,不受环境温度等影响;(3)灵活性好,只要改变存储器中的数据就可改变滤波器的参数;(4)高度规范性,便于模块化。常用的数字滤波算法有:加减法滤波器(简单梳状滤波器)、积分滤波器、三点采样值滤波器、加减交替法滤波器等4。这些滤波器有如下特点:1)运算简单,计算量小。2)梳妆频谱,在频谱特性上出现一些较大的旁瓣,即有“频率泄漏”现象,因此它对考虑滤除的那些谐波可完全抑制,而对其它整次和所有非整次谐波的滤波效果较差。3)时延反比于谐波次数,希望滤除的谐波次数越低(直流除外),时延越长,成反比变化。4)有限冲击响应。3算法设计
9、常用的数字滤波算法有很多优点,但同时也存在着一些不足,比如受某些非整次谐波以及衰减的直流分量的影响较大等等,本文尝试着将小波变换引入到的数字滤波算法中,利用小波变换优良的多分辨率特性,滤除衰减直流分量、噪声、频率波动和非整次谐波分量的影响。3.1 SymletsA小波系Symlets函数系是由Daubechies提出的近似对称的小波函数,它是对db函数的一种改进。Symlets函数系通常表示为symN(N2,3,8)的形式。该函数系具有正交性,双正交性,紧支撑性,滤波器长度为2N。这一小波系与db小波系具有类似的特点:即随着序号N的减小,时域支集变短,时域局部性越好,频域局部性越差;而序号N越
10、大时,正则性增加,频域局部性越好,而时域局部性越差5。对于本文的应用,我们希望在频域有较好的分辨率,故希望采用序号较大的小波函数,可有效提高各通道滤波器的频带选择性,降低信号在不同频带上的串扰。但是N越大,相应滤波器长度也越大,经过多次试验,本文采用sym6小波作为小波母小波。3.2信号的小波分解与重构小波多分辨分析的信号分解算法,可以将信号在时间和频率不同的多个尺度上进行分解,观察信号在各个尺度上表现,提取所需的特征。这里尺度具有频带的含义,多分辨分析的过程即为频率剥离的过程6。多分辨分析是利用2组滤波器系数hn和gn,将信号f(t)分解为平滑版本和细节版本,其中hn为低通滤波器,通过该滤波
11、器作用得到的信号称为平滑版本(高频分量),此平滑版本和细节版本称为信号f(t)通过小波变换后在尺度1上的表现。如果采样频率为fs,则平滑版本为经过hn滤波器作用后得到的频率介于0,fs/4的分量,而细节版本则为经过gn滤波器作用后得到的频率介于fs/4,fs/2的分量,再对平滑版本进行低通和带通滤波,则可得到尺度2上的平滑和细节版本。在实际应用中,一般有一个截止频率,分解到以该频率为上限频率的频段是,整个分解过程结束。利用最底层的平滑版本和各尺度上的细节版本可对原信号进行重构还原。Mallat分解算法如下:Mallat重构算法为:式中c1(n)为原始采样信号,h、g分别为低通、高通分解滤波器参
12、数,、分别为低通、高通重构滤波器参数,j为分解层数。3.3算法根据以上分析:若采样频率为600Hz,由香农采样定理,则信号最高频率为300Hz,由多分辨率分析知,c1(n)为0-150Hz的信号分量,d1(n)为150-300Hz的信号分量,c2(n)为0-75Hz的信号分量,d2(n)为75-150Hz的信号分量,c3(n)为0-37.5Hz的信号分量,d3(n)为37.5-75Hz的信号分量,包含信号的工频分量,若将c3(n)、d1(n)、d2(n)置零,则重构信号信号中衰减的直流信号分量以及所有75-300Hz的高频信号分量、噪声就被滤除,从而得到较为精确的工频信号。如要滤除除工频外所有
13、谐波分量,设计滤波算法如下:1)对信号用sym6小波作三尺度多分辨率分析2)将c3(n)、d1(n)、d2(n)置零,进行信号重构,则重构信号就是滤除谐波成分的工频分量。如果将某频带的小波系数置零,则重构信号中将没有该频段的信号分量,这样就可以滤除相应的信号分量。4仿真算例设有如下信号:f(t)=100e-30t+100sin(100t+20)+50sin(250t)+50sin(300t+130)+50sin(400t)+e该信号包含衰减的直流信号、基频信号、三次谐波和四次谐波、2.5次的非整次谐波分量以及10的白噪e。采用sym6小波作三尺度多分辨率分析,然后对各频段小波系数进行单支重构。
14、结果如图1所示:图1(c)(e)(g)分别为第3、2、1尺度下信号小波变换低频系数c3(n)、c2(n)、c1(n)重构的波形,反映了不同尺度上的原波形概貌;图1(d)(f)(h)分别为第3、2、1尺度下的信号小波变换高频系数d3(n)、d2(n)、d1(n)重构的波形,反映了不同尺度上的原波形细节。图1 原始信号及各尺度分解波形(a)(b) 为原始信号f(t)(c)(e)(g)分别为第3、2、1尺度下的信号近似波形(d)(f)(h)分别为第3、2、1尺度下的信号细节波形从分解结果可以看出:1)第3尺度细节分量d3为37.575Hz的信号分量,也即基频信号所在的频带重构信号,图1(d)正是幅值
15、近似100,每周12点的基频信号100sin(100t+20)。2)图1(c)是频带为037.5Hz的重构信号,也即衰减的直流信号100e-30t3)小波的多分辨率分析可以将信号分解到各频带。4)只要将某一频带的小波系数置零,然后重构信号,便可以滤除相应频带的信号分量,可以准确地滤除信号中的衰减的直流信号、高次谐波和非整次谐波分量。5.结论小波分析作为一个优秀的信号处理工具,在电力系统中有着广大的应用前景,其中一个突出领域就是在微机保护中的应用,基于小波变换的微机保护数字滤波器具有较大优越性,可以极大地滤除信号中的衰减的直流信号、噪声、高次谐波和非整次谐波分量,其算法精度高,可靠性高,易于在微
16、机保护上实现,尤其适用于谐波含量丰富的场合。随着小波技术的进一步发展,性能更优良的紧支撑正交小波系的提出,小波变换在数字滤波器方面的应用将会越来越实用化。参考文献1哈恒旭,台志浩,桑在中.小波分析在数字滤波中的应用研究.电力自动化设备.1999/12/6:22-25.2J.P.Antoine,D.Barache,R.M,Cesar Jr.,L.da Fontoura Costa Shape characterization with the wavelet transform Signal Processing 62(1997) 265-290.3胡昌华,张军波,夏军,张伟.基于MATLAB的
17、系统分析与设计小波分析西安电子科技大学出版社. 4Leland Bjadcson.Digital Filters and Signal Processing,Third Edition,Kluweracadbemic Publishes, Boston Dordrecht London5徐长发,李国宽.实用小波方法.华中科技大学出版社.2004.文献类型:M.6高永超,李岐强,隋青美,张桂涛.基于多分辨率分析的相关算法在信号滤波中的应用.山东大学学报(工学版).2003/33/6:31-33.作者简介:张玉春(1975),女,硕士,工程师,主要从事电力系统自动化及相关技术的研究。杨成峰(197
18、4),男,博士研究生,从事电力系统自动化、新能源发电技术等研究。E-mail:cfyang50。作者联系信息:作者姓名:张玉春邮编:211153通信地址:南京市江宁区水阁路18号 国电南思系统控制有限公司 技术质量部收信人:张玉春电话:13851804020E-mail:yczhang6Editors note: Judson Jones is a meteorologist, journalist and photographer. He has freelanced with CNN for four years, covering severe weather from tornadoe
19、s to typhoons. Follow him on Twitter: jnjonesjr (CNN) - I will always wonder what it was like to huddle around a shortwave radio and through the crackling static from space hear the faint beeps of the worlds first satellite - Sputnik. I also missed watching Neil Armstrong step foot on the moon and t
20、he first space shuttle take off for the stars. Those events were way before my time.As a kid, I was fascinated with what goes on in the sky, and when NASA pulled the plug on the shuttle program I was heartbroken. Yet the privatized space race has renewed my childhood dreams to reach for the stars.As
21、 a meteorologist, Ive still seen many important weather and space events, but right now, if you were sitting next to me, youd hear my foot tapping rapidly under my desk. Im anxious for the next one: a space capsule hanging from a crane in the New Mexico desert.Its like the set for a George Lucas mov
22、ie floating to the edge of space.You and I will have the chance to watch a man take a leap into an unimaginable free fall from the edge of space - live.The (lack of) air up there Watch man jump from 96,000 feet Tuesday, I sat at work glued to the live stream of the Red Bull Stratos Mission. I watche
23、d the balloons positioned at different altitudes in the sky to test the winds, knowing that if they would just line up in a vertical straight line we would be go for launch.I feel this mission was created for me because I am also a journalist and a photographer, but above all I live for taking a lea
24、p of faith - the feeling of pushing the envelope into uncharted territory.The guy who is going to do this, Felix Baumgartner, must have that same feeling, at a level I will never reach. However, it did not stop me from feeling his pain when a gust of swirling wind kicked up and twisted the partially
25、 filled balloon that would take him to the upper end of our atmosphere. As soon as the 40-acre balloon, with skin no thicker than a dry cleaning bag, scraped the ground I knew it was over.How claustrophobia almost grounded supersonic skydiverWith each twist, you could see the wrinkles of disappointm
26、ent on the face of the current record holder and capcom (capsule communications), Col. Joe Kittinger. He hung his head low in mission control as he told Baumgartner the disappointing news: Mission aborted.The supersonic descent could happen as early as Sunday.The weather plays an important role in t
27、his mission. Starting at the ground, conditions have to be very calm - winds less than 2 mph, with no precipitation or humidity and limited cloud cover. The balloon, with capsule attached, will move through the lower level of the atmosphere (the troposphere) where our day-to-day weather lives. It wi
28、ll climb higher than the tip of Mount Everest (5.5 miles/8.85 kilometers), drifting even higher than the cruising altitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stratosphere. As he crosses the boundary layer (called the tropopause), he can expect a lot of turbulence.The ba
29、lloon will slowly drift to the edge of space at 120,000 feet (22.7 miles/36.53 kilometers). Here, Fearless Felix will unclip. He will roll back the door.Then, I would assume, he will slowly step out onto something resembling an Olympic diving platform.Below, the Earth becomes the concrete bottom of
30、a swimming pool that he wants to land on, but not too hard. Still, hell be traveling fast, so despite the distance, it will not be like diving into the deep end of a pool. It will be like he is diving into the shallow end.Skydiver preps for the big jumpWhen he jumps, he is expected to reach the spee
31、d of sound - 690 mph (1,110 kph) - in less than 40 seconds. Like hitting the top of the water, he will begin to slow as he approaches the more dense air closer to Earth. But this will not be enough to stop him completely.If he goes too fast or spins out of control, he has a stabilization parachute t
32、hat can be deployed to slow him down. His team hopes its not needed. Instead, he plans to deploy his 270-square-foot (25-square-meter) main chute at an altitude of around 5,000 feet (1,524 meters).In order to deploy this chute successfully, he will have to slow to 172 mph (277 kph). He will have a r
33、eserve parachute that will open automatically if he loses consciousness at mach speeds.Even if everything goes as planned, it wont. Baumgartner still will free fall at a speed that would cause you and me to pass out, and no parachute is guaranteed to work higher than 25,000 feet (7,620 meters).It mi
34、ght not be the moon, but Kittinger free fell from 102,800 feet in 1960 - at the dawn of an infamous space race that captured the hearts of many. Baumgartner will attempt to break that record, a feat that boggles the mind. This is one of those monumental moments I will always remember, because there is no way Id miss this.