单位根检验论文.doc

上传人:文库蛋蛋多 文档编号:4021553 上传时间:2023-04-01 格式:DOC 页数:29 大小:544KB
返回 下载 相关 举报
单位根检验论文.doc_第1页
第1页 / 共29页
单位根检验论文.doc_第2页
第2页 / 共29页
单位根检验论文.doc_第3页
第3页 / 共29页
单位根检验论文.doc_第4页
第4页 / 共29页
单位根检验论文.doc_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《单位根检验论文.doc》由会员分享,可在线阅读,更多相关《单位根检验论文.doc(29页珍藏版)》请在三一办公上搜索。

1、单位根检验1典型随机过程简述。在介绍单位根检验之前,先认识一下各种随机过程的表现形式。(1)白噪声过程(white noise,如图1)。属于平稳过程。yt = ut, ut IID(0, s2)图3是日元兑美元差分序列(收益序列),近似于白噪声序列。(2)随机游走过程(random walk,如图2)。属于非平稳过程。yt = yt-1 + ut, ut IID(0, s2)图4是日元兑美元序列,近似于随机游走序列。随机游走的差分过程是平稳过程(白噪声过程)。Dyt = ut。 图1 白噪声序列(s2=1) 图2 随机游走序列(s2=1) 图3 日元兑美元差分序列 图4深圳股票综合指数 图5

2、 随机趋势非平稳序列(m = 0.1) 图6 随机趋势非平稳序列(m = -0.1)(3)随机趋势非平稳过程(stochastic trend process)或差分平稳过程(difference- stationary process)、有漂移项的非平稳过程(non-stationary process with drift)。见图5和6。属于非平稳过程。yt = m + yt-1 + ut , ut IID(0, s2)迭代变换,yt = m + (m + yt-2 + ut-1) + ut = = y0 + m t += m t +因为随机趋势过程是由一个确定性时间趋势mt和一个随机游走

3、组合而成,所以随机趋势过程由确定性时间趋势所主导,表现出很强的趋势性。yt围绕着mt变化,但不会回到mt。趋势的方向完全由m的符号决定。m为正时,趋势向上(见图5);m为负时,趋势向下(见图6)。对yt做一阶差分,Dyt = m + ut,为平稳过程。差分平稳过程由此得名。E(Dyt) = m。当yt表示对数变量时,E(Dyt)表示平均增长率。随机趋势非平稳过程的差分过程是平稳过程。Dyt = m + ut 。 图7 退势平稳序列(m =0, a=0.1) 图8 确定性趋势非平稳序列(m =0.1, a=0.1)(4)趋势平稳过程(trend-stationary process)或退势平稳过

4、程(见图7)。属于非平稳过程。 yt = m + a t + ut, ut IID(0, s2)因为该过程是由确定性趋势m + a t和平稳随机过程ut组成,所以称为趋势平稳过程。趋势平稳过程由确定性时间趋势t所主导。减去确定性时间趋势项at之后,过程变为平稳过程,所以也称退势平稳过程。趋势平稳过程的差分过程是过度差分过程。Dyt = a + ut - ut-1 。所以应该用退势的方法获得平稳过程。yt - a t = m + ut。(5)确定性趋势非平稳过程(non-stationary process with deterministic trend)(如图8)。属于非平稳过程。 yt =

5、 m + a t + yt-1+ ut, ut IID(0, s2)确定性趋势非平稳过程中含有随机趋势、确定性趋势并含有单位根成分。过程由确定性时间趋势所主导。减去确定性时间趋势项之后,过程仍是非平稳过程。这种过程的时间趋势性比随机趋势非平稳过程和退势平稳过程更强烈、明显。 确定性趋势非平稳过程的差分过程是退势平稳过程,Dyt = m + a t + ut。确定性趋势非平稳过程的退势过程是非平稳过程,yt - a t = m + yt-1+ ut。只有既差分又退势才能得到平稳过程,Dyt - a t = m + ut。图9 对数的中国国民收入序列 图10 中国人口序列图9是对数的中国国民收入序

6、列,近似于随机趋势非平稳序列和退势平稳序列。图10是中国人口序列,近似于确定性趋势非平稳序列。对于单位根过程(差分平稳),每个随机冲击都具有长记忆性,方差趋于无穷大,其均值概念变得毫无意义;对于退势平稳过程,随机冲击只具有有限记忆能力,其影响会很快消失,由其引起的对趋势的偏离只是暂时的。对退势平稳序列,只要正确估计出其确定性趋势,即可实现长期趋势与平稳波动部分的分离。大量的实证研究显示,不变价格的宏观经济序列为退势平稳过程的可能性远大于名义价格的宏观经济序列。中国的GDP、固定资产投资和居民消费等序列均为退势平稳序列。这意味着,改革开放以来,中国的经济增长虽然因为受到各种冲击因素的影响而出现不

7、同程度的偏离趋势的上下波动,但这种偏离是暂时的,从较长时期来看,经济增长总体上沿着确定的均衡增长路径平稳运行。而随机趋势过程虽然也有长期引力线,但其数据生成过程含有单位根,随机冲击对它具有持续的长期影响。只有通过差分才能使其平稳,属于差分平稳过程。例:给出对数的中国GDP序列如下。无论采取线性退势,还是2次退势,所得序列都是平稳序列。 线性趋势 2次趋势 ADF= -3.05 ADF(0.05) = -1.95 ADF= -4.36 ADF(0.05) = -1.952单位根检验步骤。单位根检验做得不好常常会把退势平稳过程误判为随机趋势非平稳过程(隐性趋势)和确定性趋势非平稳(显性趋势)过程。

8、检验时间序列中是否含有单位根时常会碰到如下几种问题:(1)当被检验过程(d.g.p.)的形式未知时,应该考虑到其中是否含有随机的或确定性的时间趋势成分。(2)被检验过程(d.g.p.)的形式通常要比AR(1) 形式复杂,可能是高阶自回归过程或含有移动平均成分。(3)当被检验随机过程接近含有单位根但实为平稳过程(特征根小于1,但接近1)时,在有限样本、特别是小样本条件下的单位根检验结果容易接受原假设,误判为单位根过程,即检验功效降低。(4)应该注意的是当被检验过程中含有未发现的突变点时,常导致单位根检验易于接受零假设(非平稳过程)。(5)对于季节随机过程除了检验零频率单位根外,还要检验季节单位根

9、。 检验单位根通常有3种方法。(1)DF(ADF)检验法(Dickey-Fuller,1979)、(2)CRDW(cointegration regression DW)检验法(Sargan-Bhargava,1983)、(3)PP(或Z)检验法(Phillips,1987)。最常用的是DF(和ADF)检验法。DF检验式的一种形式是 yt=byt-1+ut, utIID(0,s2) (1.a)H0:b =1,H1:b 1。检验统计量DF =或 D yt = r yt-1 + ut , ut IID(0, s2) (1.b)其中r = b -1。H0:r = 0,H1:r 0。检验统计量DF =

10、。其中和分别表示b 和r 的OLS估计量。检验式(1.b)更常用。尽管DF计算公式与t统计量相同,但在H0:r = 0成立(yt非平稳)条件下,DF不服从t分布,而服从DF分布。以b = 1的(1)式为数据生成系统(d.g.p.),DF分布百分位数用蒙特卡罗模拟的方法得到(见表1第1部分)。检验用临界值从中查取(摘自Fuller(1976)。用(1)式检验单位根等价于先验认定被检验过程yt是一个零均值、无趋势项的AR(1)过程。因为只有当一个含有单位根的随机过程中不含有确定性变量,那么该过程的均值完全由初始值决定,所以y0 = 0。可见,只有在一个过程的均值为零时,使用(1)式检验单位根才是正

11、确的。换句话说,如果被检验的过程的均值非零,就应该首先减去这个均值,然后再用(1)式检验单位根。但实际中,被检验过程的均值一般是不知道的。所以,当不知被检验过程的均值是否为零,或不知其初始值y0是否为零时,应该用下式检验单位根。 yt = m + b yt-1 + ut , ut IID(0, s2) (2.a)H0:b =1,H1:b 1。检验统计量DF =或 D yt = m +r yt-1 + ut , ut IID(0, s2) (2b)其中r = b -1。H0:r = 0,H1:r 0。检验统计量DF =。其中和分别表示b 和r 的OLS估计量。DF检验临界值应从表1第2部分查找。

12、条件是数据由b =1的(1)式生成,而DF检验式是(2)式。注意,估计(2)式得到的 和DF的分布都不受y0取值的影响。这一点太重要了。否则必须先知道y0的值和DF分布才能进行单位根检验。 表1 DF分布百分位数表DF检验式 T a 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 25- 2.66- 2.26- 1.95- 1.600.921.331.702.16 50- 2.62- 2.25- 1.95- 1.610.911.311.662.08 (a) 100- 2.60- 2.24- 1.95- 1.610.901.291.642.03检验式 (1)

13、250- 2.58- 2.23- 1.95- 1.620.891.291.632.01 500- 2.58- 2.23- 1.95- 1.620.891.281.622.00 - 2.58- 2.23- 1.95- 1.620.891.281.622.00 25- 3.75- 3.33- 3.00- 2.63- 0.370.000.340.72 50- 3.58- 3.22- 2.93- 2.60- 0.40- 0.030.290.66 (b) 100- 3.51- 3.17- 2.89- 2.58- 0.42- 0.050.260.63检验式 (2) 250- 3.46- 3.14- 2.8

14、8- 2.57- 0.42- 0.060.240.62 500- 3.44- 3.13- 2.87- 2.57- 0.43- 0.070.240.61 - 3.43- 3.12- 2.86- 2.57- 0.44- 0.070.230.60 25- 4.38- 3.95- 3.60- 3.24- 1.14- 0.80- 0.50- 0.15 50- 4.15- 3.80- 3.50- 3.18- 1.19- 0.87- 0.58- 0.24 (c) 100- 4.04- 3.73- 3.45- 3.15- 1.22- 0.90- 0.62- 0.28检验式 (3) 250- 3.99- 3.6

15、9- 3.43- 3.13- 1.23- 0.92- 0.64- 0.31 500- 3.98- 3.68- 3.42- 3.13- 1.24- 0.93- 0.65- 0.32 - 3.96- 3.66- 3.41- 3.12- 1.25- 0.94- 0.66- 0.33 t() N(0,1)- 2.33- 1.96- 1.65- 1.281.281.651.962.33 注:1. 适用于DF检验式(1), (2) 和 (3)。T:样本容量,a:检验水平。 2. d.g.p.是yt = yt-1 + ut , ut IID(0, s2)。 3. 摘自Fuller (1976) 第373页。

16、 DF检验式(2)中t()的分布见图11。t()不再服从t分布。可见对m的显著性检验也应该用蒙特卡罗模拟结果计算。T = 50条件下,临界值t()0.05 = -2.57,临界值t()0.95 = 2.51。图11 t()统计量分布的蒙特卡罗模拟(T =50,模拟1万次) 当真实的随机过程如(2)式时,就不能用(2)式检验单位根了。因为当 r = 0时,yt是一个随机趋势非平稳过程。根据m的符号(正或负)分别呈向上或向下的固定趋势变化。当r 0时,yt是一个以m / (-r )为均值的平稳过程,不含有趋势分量。所以这种条件下,用(2)式检验单位根就没有办法包括零假设和备择假设所有可能结果即不能

17、包括退势平稳过程,yt = m +at + ut (3)所以有必要在检验式中加入确定性时间趋势项at,即用下式检验单位根。 yt = m +at + b yt-1 + ut , ut IID(0, s2) (4a)H0:b =1,H1:b 1。检验统计量DF =或 D yt = m +at +r yt-1 + ut , ut IID(0, s2) (4b)其中r = b -1。H0:r = 0,H1:r -1.94,接受H0。深圳综合成指收盘价序列是单位根过程(非平稳)。3多重单位根的检验方法 若yt含有多重单位根,当对yt做单位根检验,结论必然是接受H0,说明yt是非平稳序列(起码为一阶非平

18、稳序列)。接下来应该继续检验 D yt 的平稳性。检验式是 D 2 yt = r D yt-1 + ut (8)H0:r=0。若仍不能拒绝原假设,则应该继续对D2yt序列做单位根检验。直至结论为平稳序列为止。从而获知 yt 为几阶单整序列。例如对D2yt序列的单位根检验结论是D2yt I(0),则yt I(2)。 Dickey and Pantula(1987)对此提出异议。他们认为当yt I(2)时,备择选择是yt I(1),而单位根检验的备择假设是yt I(0)。出现了不一致。这时需要检验的是D yt 是否为平稳序列。所以正确的检验程序应该是首先对yt取足够次数的差分,从而保证被检验序列为

19、平稳序列。然后每次用减少一次差分次数的序列依次进行单位根检验。直至接受原假设为止。从而判断出yt的单整阶数。当yt I(2)时,D2yt I(0)。首先应该做如下检验, D 2 yt = r D yt-1 + ut (9)如果结论是接受原假设,则yt I(2)有两个单位根。如果结论是拒绝原假设,则Dyt I(0),yt I(1)。这种检验顺序才合理。实际中,经济时间序列的单整阶数不会超过2。所以对序列进行单位根检验的顺序应该是D2 yt,D yt,yt。Dickey and Pantula基于蒙特卡罗模拟的结论显示,当序列yt含有多重单位根时,从yt开始检验单位根,则拒绝原假设的能力有所下降。

20、4单位根检验水平与功效在单位根检验中正确设定检验式的形式是非常重要的,另外差分滞后项数的多少也会对检验结果产生影响。有些因素会对单位根检验的功效和样本容量的不同产生影响,特别是小样本情形下的单位根检验。为得出满意的检验结果,单位根检验的样本容量不宜太小,统计量的检验功效要高(即当原假设不成立时,结论应是推翻原假设)。但是在有限样本条件下,退势平稳过程可以用单位根过程近似(自协方差结构很相似),同样,在小样本条件下,任何一个单位根过程也可以用退势平稳过程近似。也就说单位根过程的有限样本特征更接近于(平稳)白噪声过程,而不是非平稳的随机游走(同时退势平稳过程的有限样本特征更像一个随机游走)。这意味

21、着当以高功效拒绝备择假设(平稳过程)的同时,对近似平稳过程进行单位根检验时同样会以高概率不正确地拒绝单位根原假设。这种结论来自于特殊的退势平稳过程和近似于退势平稳过程实为差分平稳过程的有限样本统计量的分布。Blough认为在样本容量和检验功效方面不可兼得。当d.g.p.是一个近似平稳过程(小样本容量特性)时,单位根检验必定以高概率错误地拒绝非平稳原假设,同时以低功效拒绝任何序列平稳的备择假设。有限样本条件下的非平稳和平稳过程单位根检验结果的这种类似性源自于ADF统计量渐近分布临界值。当考虑增项ADF检验统计量的分布时,用的却是理想状态下DF检验统计量的渐近分布临界值这也是产生上述问题的一个原因

22、。Harris(1992b)建议用自举的方法处理单位根的ADF检验。5结构突变与单位根检验Perron指出,如果被检验过程是一个退势平稳过程,并且在考虑的期间内存在趋势结构突变。如果不考虑这种趋势突变,当用ADF统计量检验单位根时,将会把一个带趋势突变的退势平稳过程误判为随机趋势非平稳过程。即进行单位根检验时不考虑结构突变,会导致检验功效降低(实为退势平稳过程,检验结果却认为是单位根过程)。同样,当进行单位根检验时,不考虑漂移项存在突变,或不考虑趋势项、漂移项同时存在突变,也会导致单位根检验功效降低。结构突变的两种形式。 例3:有T=100的均值突变平稳过程yt如图16。ADF检验式估计结果是

23、图16 平稳加均值突变过程Dyt = -0.0119 yt-1 -0.3656 Dyt-1 + ut(-0.5)* (-3.8) R2=0.14, DW=2.07, ADF(0.05) = -1.94,T=100由于ADF检验式没有考虑均值突变,检验结果yt是单位根过程。用虚拟变量(D=0,(1-50);D=1,(51-100)区别突变前后两个时期,得ADF检验式如下:Dyt = -0.9499 yt-1 + 0.0126 Dyt-1 + 0.2714 + 7.3115 D + ut(-5.9)* (-0.1) (1.5) (5.7) R2 = 0.37, DW=1.84, ADF(0.05)

24、 = -1.94,T=100因为ADF= -5.9 tB时;Dt = 0, t tB时,截距由m0突变到m0+m1。若单位根过程具有这种截距突变,即yt = m0+m1Dt +yt-1+ut, ut I(0) ,则称yt为具有结构突变的单位根过程。然而这种结构突变也有可能发生在时间趋势上或二者都有可能发生结构突变。为方便计,截距突变对应的模型为:模型A: yt = m0+m1Dt +d t-1+ut, (3.5)当ut I(1)时,称yt由结构变化的单位根过程所生成,这一模型亦称崩溃模型。这是因为结构变化之后,yt的均值轨迹不再返回结构变化之前的均值轨迹。当突变发生在斜率而截距不变时,对应的模型为:模型B: yt = m0 +d 0 t +d 1 t* + ut, (3.6)其中t*= t- tB, t tB时;t*=0, t tB时。由于斜率反映增长率,因此也称模型B为变化的增长率模型。当截距和斜率同时具有结构突变时,对应的模型为:模型C: yt = m0 +m1Dt +d 0 t +d 1 t* + ut, (3.7)对于模型A,B,C,原假设和备择假设为:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号