圆周运动知识点及例题.doc

上传人:牧羊曲112 文档编号:4176989 上传时间:2023-04-08 格式:DOC 页数:19 大小:698KB
返回 下载 相关 举报
圆周运动知识点及例题.doc_第1页
第1页 / 共19页
圆周运动知识点及例题.doc_第2页
第2页 / 共19页
圆周运动知识点及例题.doc_第3页
第3页 / 共19页
圆周运动知识点及例题.doc_第4页
第4页 / 共19页
圆周运动知识点及例题.doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《圆周运动知识点及例题.doc》由会员分享,可在线阅读,更多相关《圆周运动知识点及例题.doc(19页珍藏版)》请在三一办公上搜索。

1、匀速圆周运动知识点及例题二、匀速圆周运动的描述 1线速度、角速度、周期和频率的概念 (1)线速度v是描述质点沿圆周运动快慢的物理量,是矢量,其大小为; 其方向沿轨迹切线,国际单位制中单位符号是m/s; (2)角速度是描述质点绕圆心转动快慢的物理量,是矢量,其大小为;在国际单位制中单位符号是rads; (3)周期T是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s; (4)频率f是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz; (5)转速n是质点在单位时间内转过的圈数,单位符号为rs,以及rmin2、速度、角速度、周期和频率之间的关系 线速度、角速度、周期和频率

2、各量从不同角度描述质点运动的快慢,它们之间有关系vr,。 由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比三、向心力和向心加速度1向心力(1)向心力是改变物体运动方向,产生向心加速度的原因(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向2向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为公式:1. 线速度Vs/t2r/T 2.角速度/t2/T2f 3.向心加速度aV2/r2r(2/T)2r 4.向心力F心mV2/rm2rmr(2/

3、T)2mv=F合 5.周期与频率:T1/f 6.角速度与线速度的关系:Vr 7.角速度与转速的关系2n(此处频率与转速意义相同) 8.主要物理量及单位:弧长s:米(m);角度:弧度(rad);频率f:赫(Hz);周期T:秒(s);转速n:r/s;半径r:米(m);线速度V:(m/s);角速度:(rad/s);向心加速度:(m/s2)。 二、向心力和加速度1、大小Fm 2 r 向心加速度a:(1)大小:a =2 f 2r (2)方向:总指向圆心,时刻变化 (3)物理意义:描述线速度方向改变的快慢。三、应用举例(临界或动态分析问题) 提供的向心力 需要的向心力 圆周运动 近心运动 离心运动0 切线

4、运动1、火车转弯如果车轮与铁轨间无挤压力,则向心力完全由重力和支持力提供,v增加,外轨挤压,如果v减小,内轨挤压问题:飞机转弯的向心力的来源2、汽车过拱桥 mg sin = f 如果在最高点,那么 此时汽车不平衡,mgN 说明:Fmv2 / r同样适用于变速圆周运动,F和v具有瞬时意义,F随v的变化而变化。 补充 : (抛体运动)3、圆锥问题 例:小球在半径为R的光滑半球内做水平面内的匀速圆周运动,试分析图中的(小球与半球球心连线跟竖直方向的夹角)与线速度v、周期T的关系。,由此可得:,F4、绳杆球 这类问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在

5、最低点处的速率最大。物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。弹力只可能向下,如绳拉球。这种情况下有即,否则不能通过最高点。弹力只可能向上,如车过桥。在这种情况下有:,否则车将离开桥面,做平抛运动。弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。这种情况下,速度大小v可以取任意值。但可以进一步讨论:当时物体受到的弹力必然是向下的;当时物体受到的弹力必然是向上的;当时物体受到的弹力恰好为零。当弹力大小Fmg时,向心力只有一解:F +mg;当弹力F=mg时,向心力等于零。四、牛顿

6、运动定律在圆周运动中的应用(圆周运动动力学问题)1向心力(1)大小:(2)方向:总指向圆心,时刻变化2处理方法:一般地说,当做圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。分别与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律:Fn=man在列方程时,根据物体的受力分析,在方程左边写出外界给物体提供的合外力,右边写出物体需要的向心力(可选用等各种形

7、式)。【例1】 如图所示的装置是在竖直平面内放置光滑的绝缘轨道,处于水平向右的匀强电场中,以带负电荷的小球从高h的A处静止开始下滑,沿轨道ABC运动后进入圆环内作圆周运动。已知小球所受到电场力是其重力的34,圆滑半径为R,斜面倾角为,sBC=2R。若使小球在圆环内能作完整的圆周运动,h至少为多少?解析:小球所受的重力和电场力都为恒力,故可两力等效为一个力F,如图所示。可知F1.25mg,方向与竖直方向左偏下37,从图6中可知,能否作完整的圆周运动的临界点是能否通过D点,若恰好能通过D点,即达到D点时球与环的弹力恰好为零。由圆周运动知识得: 即:由动能定理:联立、可求出此时的高度h。五、综合应用

8、例析【例2】如图所示,用细绳一端系着的质量为M=0.6kg的物体A静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O吊着质量为m=0.3kg的小球B,A的重心到O点的距离为0.2m若A与转盘间的最大静摩擦力为f=2N,为使小球B保持静止,求转盘绕中心O旋转的角速度的取值范围解析:要使B静止,A必须相对于转盘静止具有与转盘相同的角速度A需要的向心力由绳拉力和静摩擦力合成角速度取最大值时,A有离心趋势,静摩擦力指向圆心O;角速度取最小值时,A有向心运动的趋势,静摩擦力背离圆心O对于B,T=mg 对于A,rad/s rad/s 所以 2.9 rad/s rad/s 【例3】一内壁光滑的环形细圆管,

9、位于竖直平面内,环的半径为R(比细管的半径大得多)在圆管中有两个直径与细管内径相同的小球(可视为质点)A球的质量为m1,B球的质量为m2它们沿环形圆管顺时针运动,经过最低点时的速度都为v0设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m2、R与v0应满足的关系式是_解析:A球通过圆管最低点时,圆管对球的压力竖直向上,所以球对圆管的压力竖直向下若要此时两球作用于圆管的合力为零,B球对圆管的压力一定是竖直向上的,所以圆管对B球的压力一定是竖直向下的最高点时根据牛顿运动定律对于A球, 对于B球,又 N1=N2 解得 【例5】如图所示,滑块在恒定外力作用下从水

10、平轨道上的A点由静止出发到B点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰好通过轨道最高点C,滑块脱离半圆形轨道后又刚好落到原出发点A,试求滑块在AB段运动过程中的加速度.解析:设圆周的半径为R,则在C点:mg=m 离开C点,滑块做平抛运动,则2Rgt22 vCtsAB 由B到C过程: mvC2/2+2mgRmvB2/2 由A到B运动过程: vB22asAB 由式联立得到: a=5g4例6、如图所示,M为悬挂在竖直平面内某一点的木质小球,悬线长为L,质量为m的子弹以水平速度V0射入球中而未射出,要使小球能在竖直平面内运动,且悬线不发生松驰,求子弹初速度V0应满足的条件。 分两种情况:(1

11、)若小球能做完整的圆周运动,则在最高点满足:由机械能守定律得:由以上各式解得:.(2)若木球不能做完整的圆周运动,则上升的最大高度为L时满足: 解得:.所以,要使小球在竖直平面内做悬线不松驰的运动,V0应满足的条件是:或1.图4211在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45,重力加速度为g10 m/s2,若已知女运动员的体重为35 kg,据此可估算该女运动员() A受到的拉力约为350 N B受到的拉力约为350 NC向心加速度约为10 m/s2 D向心加速度约为10

12、 m/s2解析:本题考查了匀速圆周运动的动力学分析以女运动员为研究对象,受力分析如图根据题意有Gmg350 N;则由图易得女运动员受到的拉力约为350 N,A正确;向心加速度约为10 m/s2,C正确答案:AC2.图4212中央电视台今日说法栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案经公安部门和交通部门协力调查,画出的现场示意图如图4212所示交警根据图示作出以下判断,你认为正确的是()A由图可知汽车在拐弯时发生侧翻是因为车做离心运

13、动B由图可知汽车在拐弯时发生侧翻是因为车做向心运动C公路在设计上可能内(东)高外(西)低D公路在设计上可能外(西)高内(东)低解析:由题图可知发生事故时,卡车在做圆周运动,从图可以看出卡车冲入民宅时做离心运动,故选项A正确,选项B错误;如果外侧高,卡车所受重力和支持力提供向心力,则卡车不会做离心运动,也不会发生事故,故选项C正确答案:AC3.图4213(2010湖北部分重点中学联考)如图4213所示,质量为m的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径某同学拿着该盒子在竖直平面内做半径为R的匀速圆周运动,已知重力加速度为g,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则(

14、)A该盒子做匀速圆周运动的周期一定小于2B该盒子做匀速圆周运动的周期一定等于2C盒子在最低点时盒子与小球之间的作用力大小可能小于2mgD盒子在最低点时盒子与小球之间的作用力大小可能大于2mg解析:要使在最高点时盒子与小球之间恰好无作用力,则有mg,解得该盒子做匀速圆周运动的速度v,该盒子做匀速圆周运动的周期为T2.选项A错误,B正确;在最低点时,盒子与小球之间的作用力和小球重力的合力提供小球运动的向心力,由Fmg,解得F2mg,选项C、D错误答案:B4.图4214如图4214所示,半径为r20 cm的两圆柱体A和B,靠电动机带动按相同方向均以角速度8 rad/s转动,两圆柱体的转动轴互相平行且

15、在同一平面内,转动方向已在图中标出,质量均匀的木棒水平放置其上,重心在刚开始运动时恰在B的正上方,棒和圆柱间动摩擦因数0.16,两圆柱体中心间的距离s1.6 m,棒长l2 m,重力加速度取10 m/s2,求从棒开始运动到重心恰在A正上方需多长时间?解析:棒开始与A、B两轮有相对滑动,棒受向左摩擦力作用,做匀加速运动,末速度vr80.2 m/s1.6 m/s,加速度ag1.6 m/s2,时间t11 s,此时间内棒运动位移s1at0.8 m此后棒与A、B无相对运动,棒以vr做匀速运动,再运动s2ABs10.8 m,重心到A正上方时间t20.5 s,故所求时间tt1t21.5 s.答案:1.5 s5

16、图4215在一次抗洪救灾工作中,一架直升机A用长H50 m的悬索(重力可忽略不计)系住一质量m50 kg的被困人员B,直升机A和被困人员B以v010 m/s的速度一起沿水平方向匀速运动,如图4215甲所示某时刻开始收悬索将人吊起,在5 s时间内,A、B之间的竖直距离以l50t2(单位:m)的规律变化,取g10 m/s2.(1)求这段时间内悬索对被困人员B的拉力大小(2)求在5 s末被困人员B的速度大小及位移大小(3)直升机在t5 s时停止收悬索,但发现仍然未脱离洪水围困区,为将被困人员B尽快运送到安全处,飞机在空中旋转后静止在空中寻找最近的安全目标,致使被困人员B在空中做圆周运动,如图乙所示此

17、时悬索与竖直方向成37角,不计空气阻力,求被困人员B做圆周运动的线速度以及悬索对被困人员B的拉力(sin 370.6,cos 370.8)解析:(1)被困人员在水平方向上做匀速直线运动,在竖直方向上被困人员的位移yHl50(50t2)t2,由此可知,被困人员在竖直方向上做初速度为零、加速度a2 m/s2的匀加速直线运动,由牛顿第二定律可得Fmgma,解得悬索的拉力Fm(ga)600 N.(2)被困人员5 s末在竖直方向上的速度为vyat10 m/s,合速度v10 m/s,竖直方向上的位移yat225 m,水平方向的位移xv0t50 m,合位移s25 m.(3)t5 s时悬索的长度l50y25

18、m,旋转半径rlsin 37,由mmgtan 37,解得v m/s.此时被困人员B的受力情况如右图所示, 由图可知Tcos 37mg,解得T625 N.答案:(1)600 N(2)10 m/s25 m(3)625 N6图4226如图4226所示,小球从光滑的圆弧轨道下滑至水平轨道末端时,光电装置被触动,控制电路会使转筒立刻以某一角速度匀速连续转动起来转筒的底面半径为R,已知轨道末端与转筒上部相平,与转筒的转轴距离为L,且与转筒侧壁上的小孔的高度差为h;开始时转筒静止,且小孔正对着轨道方向现让一小球从圆弧轨道上的某处无初速滑下,若正好能钻入转筒的小孔(小孔比小球略大,小球视为质点,不计空气阻力,

19、重力加速度为g),求:(1)小球从圆弧轨道上释放时的高度为H;(2)转筒转动的角速度.解析:(1)设小球离开轨道进入小孔的时间为t,则由平抛运动规律得hgt2,LRv0t小球在轨道上运动过程中机械能守恒,故有mgHmv联立解得:t ,H.(2)在小球做平抛运动的时间内,圆筒必须恰好转整数转,小球才能钻进小孔,即t2n(n1,2,3)所以n (n1,2,3)答案:(1)(2)n (n1,2,3)、圆周运动的应用专题知识简析 一、圆周运动的临界问题1.圆周运动中的临界问题的分析方法 首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度

20、变化的对应关系,从而分析找到临界值2.特例(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:注意:绳对小球只能产生沿绳收缩方向的拉力 临界条件:绳子或轨道对小球没有力的作用:mg=mv2/Rv临界=(可理解为恰好转过或恰好转不过的速度)注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力作为向心力,此时临界速度V临 能过最高点的条件:v,当V时,绳对球产生拉力,轨道对球产生压力不能过最高点的条件:VV临界(实际上球还没到最高点时就脱离了轨道)(2)如图(a)的球过最高点时,轻质杆(管)对球产生的弹力情况:注意:杆与绳不同,杆对球既能产生拉

21、力,也能对球产生支持力当v0时,Nmg(N为支持力)当 0v时, N随v增大而减小,且mgN0,N为支持力当v=时,N0 当v时,N为拉力,N随v的增大而增大(此时N为拉力,方向指向圆心)注意:管壁支撑情况与杆子一样 若是图(b)的小球,此时将脱离轨道做平抛运动因为轨道对小球不能产生拉力注意:如果小球带电,且空间存在电场或磁场时,临界条件应是小球所受重力、电场力和洛仑兹力的合力等于向心力,此时临界速度 。要具体问题具体分析,但分析方法是相同的。水流星模型(竖直平面内的圆周运动)竖直平面内的圆周运动是典型的变速圆周运动研究物体通过最高点和最低点的情况,并且经常出现临界状态。(圆周运动实例)火车转

22、弯 汽车过拱桥、凹桥3飞机做俯冲运动时,飞行员对座位的压力。物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。万有引力卫星的运动、库仑力电子绕核旋转、洛仑兹力带电粒子在匀强磁场中的偏转、重力与弹力的合力锥摆、(关健要搞清楚向心力怎样提供的)(1)火车转弯:设火车弯道处内外轨高度差为h,内外轨间距L,转弯半径R。由于外轨略高于内轨,使得火车所受重力和支持力的合力F合提供向心力。 当火车行驶速率V等于V0时,F合=F向,内外轨道对轮缘都没有侧压力当火车行驶V大于V0时

23、,F合F向,内轨道对轮缘有侧压力,F合-N=mv2/R即当火车转弯时行驶速率不等于V0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。(2)无支承的小球,在竖直平面内作圆周运动过最高点情况: 临界条件:由mg+T=mv2/L知,小球速度越小,绳拉力或环压力T越小,但T的最小值只能为零,此时小球以重力为向心力,恰能通过最高点。即mg=mv临2/R结论:绳子和轨道对小球没有力的作用(可理解为恰好转过或恰好转不过的速度),只有重力作向心力,临界速度V临=能过最高点条件:VV临(当VV临时,绳、轨道对球分别产生拉力、压力)不能过最高点条件:VV临(实际上球还未到最

24、高点就脱离了轨道)最高点状态: mg+T1=mv高2/L (临界条件T1=0, 临界速度V临=, VV临才能通过)最低点状态: T2- mg = mv低2/L 高到低过程机械能守恒: 1/2mv低2= 1/2mv高2+ mghT2- T1=6mg(g可看为等效加速度)半圆:mgR=1/2mv2 T-mg=mv2/R T=3mg(3)有支承的小球,在竖直平面作圆周运动过最高点情况:临界条件:杆和环对小球有支持力的作用 当V=0时,N=mg(可理解为小球恰好转过或恰好转不过最高点)恰好过最高点时,此时从高到低过程 mg2R=1/2mv2 低点:T-mg=mv2/R T=5mg注意物理圆与几何圆的最

25、高点、最低点的区别 (以上规律适用于物理圆,不过最高点,最低点, g都应看成等效的)2解决匀速圆周运动问题的一般方法(1)明确研究对象,必要时将它从转动系统中隔离出来。(2)找出物体圆周运动的轨道平面,从中找出圆心和半径。(3)分析物体受力情况,千万别臆想出一个向心力来。(4)建立直角坐标系(以指向圆心方向为x轴正方向)将力正交分解。(5)离心运动概念:做匀速圆周运动的物体,在所受合力突然消失或者不足于提供圆周运动的所需的向心力的情况下,就做逐渐远离圆心的运动,这种运动称作为离心运动3.离心现象离心运动的条件: 提供给物体做圆周运动的向心力不足或消失。(离心运动两种现象) 当F合= 0时,物体

26、沿切线方向飞出。 当F合m2r或F合m时,物体逐渐远离圆心。离心现象的本质物体惯性的表现 “远离”不能理解为沿半径方向“背离”离心现的实例: 用提供的力与需要的向心力的关系角度解释离心现象应用:雨伞、链球、洗衣机脱水筒脱水、离心分离器、离心干燥器、离心测速计等防止:汽车转弯时的限速;高速旋转的飞轮、砂轮的限速和防护离心运动的应用和防止措施: 应用:增大线速度v或角速度;减小提供的向心力F供 防止:减小线速度v、角速度或转速;增加提供做圆周运动所需的向心力F供 (1)离心运动的概念:做匀速圆周运动的物体,在所受合力突然消失或者不足于提供圆周运动的所需的向心力的情况下,就做逐渐远离圆心的运动,这种

27、运动称作为离心运动注意:离心运动的原因是合力突然消失,或不足以提供向心力,而不是物体又受到什么“离心力”(2)离心运动的条件:提供给物体做圆周运动的向心力不足或消失。F获F需离心运动的两种情况:当产生向心力的合外力突然消失,物体便沿所在位置的切线方向飞出。当产生向心力的合外力不完全消失,而只是小于所需要的向心力,物体将沿切线和圆周之间的一条曲线运动,远离圆心而去。设质点的质量为m,做圆周运动的半径为r,角速度为,线角速度为,向心力为F,如图所示 F=0 (离心运动)O Fm2r F= m2r(离心运动)(3)对离心运动的理解:当F=m2r或时,物体做匀速圆周运动。当F = 0时,物体沿切线方向

28、飞出做直线运动。 (离心运动)当Fm2r或时,物体逐渐远离圆心运动。 (离心运动)当Fm2r或时,物体逐渐靠近圆心的向心运动。若所受的合外力F大于所需的向心力时,物体就会做越来越靠近圆心的“近心”运动,人造卫星或飞船返回过程就有一阶段是做“近心”运动。(4)离心现象的本质分析离心现象的本质物体惯性的表现。分析:做匀速圆周运动的物体,由于本身有惯性,总是沿着切线方向运动,只是由于向心力作用,使它不能沿切线方向飞出,而被限制着沿圆周运动。如果提供向心力的合外力突然消失,物体由于本身的惯性,将沿着切线方向运动,这也是牛顿第一定律的必然结果。如果提供向心力的合外力减小,使它不足以将物体限制在圆周上,物体将做半径变大的圆周运动。此时,物体逐渐远离圆心,但“远离”不能理解为“背离”。做离心运动的物体并非沿半径方向飞出,而是运动半径越来越大 。二.“质点做匀速圆周运动”与“物体绕固定轴做匀速转动”的区别与联系(1)质点做匀速圆周运动是在外力作用下的运动,所以质点在做变速运动,处于非平衡状态。(2)物体绕固定轴做匀速转动是指物体处于力矩平衡的转动状态。对于物体上不在转动轴上的任意微小质量团(可说成质点),则均在做匀速圆周运动。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号