《高中数学 321 古典概型能力强化提升 新人教A版必修3.doc》由会员分享,可在线阅读,更多相关《高中数学 321 古典概型能力强化提升 新人教A版必修3.doc(6页珍藏版)》请在三一办公上搜索。
1、【成才之路】2014高中数学 3-2-1 古典概型能力强化提升 新人教A版必修3一、选择题1为了丰富高一学生的课外生活,某校要组建数学、计算机、航空模型3个兴趣小组,小明要选报其中的2个,则基本事件有()A1个 B2个 C3个 D4个答案C解析基本事件有数学,计算机,数学,航空模型,计算机,航空模型,共3个,故选C.2下列试验中,是古典概型的为()A种下一粒花生,观察它是否发芽B向正方形ABCD内,任意投掷一点P,观察点P是否与正方形的中心O重合C从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率D在区间0,5内任取一点,求此点小于2的概率答案C解析对于A,发芽与不发芽的概率一般不
2、相等,不满足等可能性;对于B,正方形内点的个数有无限多个,不满足有限性;对于C,满足有限性和等可能性,是古典概型;对于D,区间内的点有无限多个,不满足有限性,故选C.3袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,不是基本事件的为()A正好2个红球 B正好2个黑球C正好2个白球 D至少1个红球答案D解析至少1个红球包含,一红一白或一红一黑或2个红球,所以至少1个红球不是基本事件,其他项中的事件都是基本事件4下列对古典概型的说法中正确的是()试验中所有可能出现的基本事件只有有限个每个事件出现的可能性相等每个基本事件出现的可能性相等基本事件总数为n,随机事件A若包含k个基本事件,则P(
3、A)A B C D答案B解析中所说的事件不一定是基本事件,所以不正确;根据古典概型的特点及计算公式可知正确5在200瓶饮料中,有4瓶已过保质期,从中任取一瓶,则取到的是已过保质期的概率是()A0.2 B0.02 C0.1 D0.01答案B解析所求概率为0.02.6某国际科研合作项目由两个美国人,一个法国人和一个中国人共同开发完成,现从中随机选出两个人作为成果发布人,现选出的两人中有中国人的概率为()A. B. C. D1答案C解析用列举法可知,共6个基本事件,有中国人的基本事件有3个7(2012安徽卷)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球
4、颜色为一白一黑的概率等于()A. B.C. D.答案B解析1个红球,2个白球和3个黑球记为a1,b1,b2,c1,c2,c3从袋中任取两球共有a1,b1;a1,b2;a1,c1;a1,c2;a1,c3;b1,b2;b1,c1;b1,c2;b1,c3;b2,c1;b2;c2;b2,c3;c1,c2;c1,c3;c2,c315种;满足两球颜色为一白一黑有6种,概率等于.8(20122013东北四校联考)若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线xy4上的概率是()A. B. C. D.答案D解析由题意知(m,n)的取值情况有(1,1),(1,2),(1,6);(2,1),(2
5、,2),(2,6);(6,1),(6,2),(6,6)共36种情况而满足点P(m,n)在直线xy4上的取值情况有(1,3),(2,2),(3,1),共3种情况,故所求概率为,故选D.二、填空题9小明一家想从北京、济南、上海、广州四个城市中任选三个城市作为2012年暑假期间的旅游目的地,则济南被选入的概率是_答案解析事件“济南被选入”的对立事件是“济南没有被选入”某城市没有入选的可能的结果有四个,故“济南没有被选入”的概率为,所以其对立事件“济南被选入”的概率为P1.10袋子中有大小相同的四个小球,分别涂以红、白、黑、黄颜色(1)从中任取1球,取出白球的概率为_(2)从中任取2球,取出的是红球、
6、白球的概率为_答案(1)(2)解析(1)任取一球有4种等可能结果,而取出的是白球只有一个结果,P.(2)取出2球有6种等可能结果,而取出的是红球、白球的结果只有一种,概率P.11有一个正12面体,12个面上分别写有112这12个整数,投掷这个12面体一次,则向上一面的数字是2的倍数或3的倍数的概率为_答案解析据题意所有的基本事件数为12,其中2或3的倍数有:2,3,4,6,8,9,10,12共8个故所求的概率为P.12某学校共有2000名学生,各年级男、女生人数如下表:一年级二年级三年级男生369370y女生381xz已知从全校学生中随机抽取1名学生,抽到二年级女生的概率是0.19,现拟采用分
7、层抽样的方法从全校学生中抽取80名学生,则三年级应抽取的学生人数为_人答案20解析由题意知,抽到二年级女生的概率为0.19,则0.19,解得x380,则yz2 000(369381370380)500,则三年级学生人数为500,又分层抽样的抽样比为,所以从全校学生中抽取80名学生中,三年级应抽取的学生人数为50020.三、解答题13随意安排甲、乙、丙3人在3天假期中值班,每人值班1天,则:(1)这3人的值班顺序共有多少种不同的排列方法?(2)这3人的值班顺序中,甲在乙之前的排法有多少种?(3)甲排在乙之前的概率是多少?解析(1)3个人值班的顺序所有可能的情况如下图所示由图知,所有不同的排列顺序
8、共有6种(2)由图知,甲排在乙之前的排法有3种(3)记“甲排在乙之前”为事件A,则P(A).14袋中有两个红球和两个白球,现从中任取两个小球,求所取的两个小球中至少有一个红球的概率分析解析给两个红球编号为1,2,两个白球编号为3,4,从中任取两个,共有6个基本事件:1,2,1,3,1,4,2,3,2,4,3,4设至少有一个红球为事件A.解法一:至少有一个红球的结果有5个:1,2,1,3,1,4,2,3,2,4,则至少有一个红球的概率为P(A).解法二:设事件B“有一个红球与一个白球”,事件“两个都是红球”,则ABC.由互斥事件的概率加法公式得P(A)P(BC)P(B)P(C).解法三:设事件D
9、“两个都是白球”,则事件A与事件D互为对立事件,所以P(A)1P(D)1.规纳总结:在古典概型中,求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先去求对立事件的概率,进而再求所求事件的概率凡涉及“至多”“至少”型的问题,可以用互斥事件以及分类讨论思想求解,当涉及的互斥事件多于2个时,一般用对立事件求解15(2012山东高考卷)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片
10、颜色不同且标号之和小于4的概率解析(1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为P.(2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P.16(20122013广东肇庆二模)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了
11、3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日温差x()101113128发芽数y(颗)2325302616(1)求这5天发芽数的中位数;(2)求这5天的平均发芽率;(3)从3月1日至3月5日中任选2天,记前面一天发芽的种子数为m,后面一天发芽的种子数为n,用(m,n)的形式列出所有基本事件,并求满足“”的概率解析(1)因为1623252630,所以这5天发芽数的中位数是25.(2)这5天的平均发芽率为100%24%.(3)用(x,y)表示所求基本事件,则有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16)共有10个基本事件记“”为事件A,则事件A包含的基本事件为(25,30),(25,26),(30,26),共有3个基本事件所以P(A),即事件“”的概率为.