《13不等式的解集教案2.doc》由会员分享,可在线阅读,更多相关《13不等式的解集教案2.doc(4页珍藏版)》请在三一办公上搜索。
1、1.3 不等式的解集本节知识点来源:学*科*网知识技能目标过程性目标来源:学科网ZXXK了解(认识)理解掌握灵活运用经历(感受)体验(体会)探索第一课时1.能够根据具体问题中的大小关系了解不等式的意义.2.理解不等式的解、不等式的解集、解不等式这些概念的含义.3.会在数轴上表示不等式的解集.过程与方法(突出课时目标,突出学生主体、突出问题引领,突出目标落实)教学过程教学反思教学过程一、.创设问题情境,引入新课1、上节课,我们对照等式的性质类比地推导出了不等式的基本性质,并且讨论了它们的异同点.下面我找一位同学简单地回顾一下不等式的基本性质.2、在学习了等式的基本性质后,我们利用等式的基本性质学
2、习了一元一次方程,知道了方程的解、解方程等概念,大家还记得这些概念吗?上节课我们用类推的方法,仿照等式的基本性质推导出了不等式的基本性质,能不能按此方法推导出不等式的解和解不等式呢?本节课我们就来试一试.二、.新课讲授1.现实生活中的不等式.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域.已知导火线的燃烧速度为以0.02 m/s,人离开的速度为4 m/s,那么导火线的长度应为多少厘米?分析:人转移到安全区域需要的时间最少为秒,导火线燃烧的时间为秒,要使人转移到安全地带,必须有:.解:设导火线的长度应为x cm,根据题意,得 x5.2.想一想(1)x=5,
3、6,8能使不等式x5成立吗?(2)你还能找出一些使不等式x5成立的x的值吗?解:(1)x=5不能使x5成立,x=6,8能使不等式x5成立.(2)x=9,10,11等比5大的数都能使不等式x5成立.由此看来,6,7,8,9,10都能使不等式成立,那么大家能否根据方程的解来类推出不等式的解呢?不等式的解唯一吗?解:可以.能使不等式成立的未知数的值,叫做不等式的解.如6、7、8都是x5的解.所以不等式的解不唯一,有无数个解.正因为不等式的解不唯一,因此把所有满足不等式的解集合在一起,构成不等式的解集请大家再类推出解不等式的概念.求不等式解集的过程叫解不等式.3.议一议.请你用自己的方式将不等式x5的
4、解集和不等式x51的解集分别表示在数轴上,并与同伴交流.解:不等式x5的解集可以用数轴上表示5的点的右边部分来表示(图13),在数轴上表示5的点的位置上画空心圆圈,表示5不在这个解集内.图13不等式x51的解集x4可以用数轴上表示4的点及其左边部分来表示(图14),在数轴上表示4的点的位置上画实心圆点,表示4在这个解集内.图14请大家讨论一下,如何把不等式的解集在数轴上表示出来呢?请举例说明.解:如x3, 即为数轴上表示3的点的右边部分,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点.x3,可以用数轴上表示3的点的左边部分来表示,在这一点上画空心圆圈.x3,可以用数轴上表示3的点和它的
5、右边部分来表示,在表示3的点的位置上画实心圆点,表示包括这一点.x3,可以用数轴上表示3的点和它的左边部分来表示,在表示3的点的位置上画实心圆点.4.例题讲解投影片(1.3 A)根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来.(1)x24;(2)2x8(3)2x210解:(1)根据不等式的基本性质1,两边都加上2,得x2在数轴上表示为:图15(2)根据不等式的基本性质2,两边都除以2,得x4在数轴上表示为:图16(3)根据不等式的基本性质1,两边都加上2,得2x8根据不等式的基本性质3,两边都除以2,得x4在数轴上表示为:图17三、.课堂练习1.判断正误:(1)不等式x10有无数
6、个解;(2)不等式2x30的解集为x.2.将下列不等式的解集分别表示在数轴上:(1)x4;(2)x1;(3)x2;(4)x6.1.解:(1)x10,x1x10有无数个解.正确.(2)2x30,2x3,x,结论错误.2.解:图18四、.课时小结本节课学习了以下内容1.理解不等式的解,不等式的解集,解不等式的概念.2.会根据不等式的基本性质解不等式,并把解集在数轴上表示出来.课后作业习题1.3五、.活动与探究小于2的每一个数都是不等式x+36的解,所以这个不等式的解集是x2.这种解答正确吗?解:不正确.从解不等式的过程来看,根据不等式的基本性质1,两边都减去3,得x3.所以不等式x+36的解集为x3,而不是x2.当然小于2的值都在x3这个范围内,它只是解集中的一部分,不是全部,所以不能以部分来代替全部.因此说x2是不等式x+36的解是错误的.板书设计1.3 不等式的解集一、1.现实生活中的不等式(水费问题);2.想一想(类推不等式中的有关概念);3.议一议(如何把不等式的解集在数轴上表示出来);4.例题讲解. 二、课堂练习