九年级数学《二次函数》总复习课件.ppt

上传人:牧羊曲112 文档编号:4357681 上传时间:2023-04-19 格式:PPT 页数:23 大小:633.01KB
返回 下载 相关 举报
九年级数学《二次函数》总复习课件.ppt_第1页
第1页 / 共23页
九年级数学《二次函数》总复习课件.ppt_第2页
第2页 / 共23页
九年级数学《二次函数》总复习课件.ppt_第3页
第3页 / 共23页
九年级数学《二次函数》总复习课件.ppt_第4页
第4页 / 共23页
九年级数学《二次函数》总复习课件.ppt_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《九年级数学《二次函数》总复习课件.ppt》由会员分享,可在线阅读,更多相关《九年级数学《二次函数》总复习课件.ppt(23页珍藏版)》请在三一办公上搜索。

1、二次函数复习课,二次函数知识点导航:,1、二次函数的定义2、二次函数的图像及性质3、求解析式的三种方法4、a,b,c及相关符号的确定5、抛物线的平移6、二次函数与一元二次方程的关系7、二次函数的应用题8、二次函数的综合运用本章共分两课时:第一课时复习知识点15 第二课时复习知识点8,1、二次函数的定义,定义:y=ax bx c(a、b、c 是常数,a 0)定义要点:a 0 最高次数为2 代数式一定是整式练习:1、y=-x,y=2x-2/x,y=100-5 x,y=3 x-2x+5,其中是二次函数的有_个。,2.当m_时,函数y=(m+1)-2+1 是二次函数?,2、二次函数的图像及性质,抛物线

2、,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2+bx+c(a0),y=ax2+bx+c(a0),由a,b和c的符号确定,由a,b和c的符号确定,a0,开口向上,a0,开口向下,在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.,在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.,例2:,(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)x为何值时,y随的增大而减少,x为何值时,y有最大(小)值,这个最大(小)值是多少?(4)x为何值时,y0?,已知二次函数

3、,0,(-1,-2),(0,-),(-3,0),(1,0),3,2,y,x,由图象可知:,当x1时,y 0,当-3 x 1时,y 0,(4),2,顶点式:已知抛物线顶点坐标(h,k),通常设抛物线解析式为_求出表达式后化为一般形式.,3,交点式:已知抛物线与x 轴的两个交点(x1,0)、(x2,0),通常设解析式为_求出表达式后化为一般形式.,1、一般式:已知抛物线上的三点,通常设解析式为_,y=ax2+bx+c(a0),y=a(x-h)2+k(a0),y=a(x-x1)(x-x2)(a0),3、求抛物线解析式的三种方法,练习:根据下列条件,求二次函数的解析式。,(1)、图象经过(0,0),(

4、1,-2),(2,3)三点;,(2)、图象的顶点(2,3),且经过点(3,1);,(3)、图象经过(0,0),(12,0),且最高点 的纵坐标是3。,例1、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。,解:二次函数的最大值是2抛物线的顶点纵坐标为2又抛物线的顶点在直线y=x+1上当y=2时,x=1 顶点坐标为(1,2)设二次函数的解析式为y=a(x-1)2+2又图象经过点(3,-6)-6=a(3-1)2+2 a=-2二次函数的解析式为y=-2(x-1)2+2即:y=-2x2+4x,4、a,b,c符号的确定,抛物线y=ax2

5、+bx+c的符号问题:,(1)a的符号:,由抛物线的开口方向确定,开口向上,a0,开口向下,a0,(2)C的符号:,由抛物线与y轴的交点位置确定.,交点在x轴上方,c0,交点在x轴下方,c0,经过坐标原点,c=0,(3)b的符号:,由对称轴的位置确定,对称轴在y轴左侧,a、b同号,对称轴在y轴右侧,a、b异号,对称轴是y轴,b=0,(4)b2-4ac的符号:,由抛物线与x轴的交点个数确定,与x轴有两个交点,b2-4ac0,与x轴有一个交点,b2-4ac=0,与x轴无交点,b2-4ac0,(5)a+b+c的符号:因为x=1时,y=a+b+c,所以a+b+c的符号由x=1时,对应的y值决定。当x=

6、1时,y0,则a+b+c0当x=1时,y0,则a-b+c0当x=-1,y0,则a-b+c0当x=-1,y=0,则a-b+c=0,、二次函数y=ax2+bx+c(a0)的图象如图 所示,则a、b、c的符号为()A、a0,c0 B、a0,c0 D、a0,b0,c0,2、二次函数y=ax2+bx+c(a0)的图象 如图所示,则a、b、c的符号为()A、a0,b0,c=0 B、a0,c=0 C、a0,b0,c=0,3、二次函数y=ax2+bx+c(a0)的图象如图 所示,则a、b、c、的符号为()A、a0,b=0,c0,0 B、a0,c0,b=0,c0 D、a0,b=0,c0,0,B,A,C,o,o,

7、o,练习:,熟练掌握a,b,c,与抛物线图象的关系,(上正、下负),(左同、右异),c,4.抛物线y=ax2+bx+c(a0)的图象经过原点和 二、三、四象限,判断a、b、c的符号情况:a 0,b 0,c 0.,=,5.抛物线y=ax2+bx+c(a0)的图象经过原点,且它的顶点在第三象限,则a、b、c满足 的条件是:a 0,b 0,c 0.,=,6.二次函数y=ax2+bx+c中,如果a0,b0,c0,那么这个二次函数图象的顶点必在第 象限,先根据题目的要求画出函数的草图,再根据图象以及性质确定结果(数形结合的思想),四,3.已知二次函数的图像如图所示,下列结论:a+b+c=0 a-b+c0

8、 abc 0 b=2a其中正确的结论的个数是()A 1个 B 2个 C 3个 D 4个,D,x,-1,1,0,y,要点:寻求思路时,要着重观察抛物线的开口方向,对称轴,顶点的位置,抛物线与x轴、y轴的交点的位置,注意运用数形结合的思想。,5、抛物线的平移,左加右减,上加下减,练习二次函数y=2x2的图象向 平移 个单位可得到y=2x2-3的图象;二次函数y=2x2的图象向 平移 个单位可得到y=2(x-3)2的图象。二次函数y=2x2的图象先向 平移 个单位,再向 平移 个单位可得到函数y=2(x+1)2+2的图象。,下,3,右,3,左,1,上,2,练习:(3)由二次函数y=x2的图象经过如何

9、平移可以得到函数y=x2-5x+6的图象.,y=x2-5x+6,6二次函数与一元二次方程的关系,一元二次方程根的情况与b-4ac的关系我们知道:代数式b2-4ac对于方程的根起着关键的作用.,二次函数y=axbxc的图象和x轴交点的横坐标,便是对应的一元二次方程axbxc=0的解。二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点(2)有一个交点(3)没有交点,二次函数与一元二次方程,b2 4ac 0,b2 4ac=0,b2 4ac 0,若抛物线y=ax2+bx+c与x轴有交点,则,b2 4ac,0,与x轴有两个不同的交点(x1,0)(x2,0),有两个不同的解x=x1,

10、x=x2,b2-4ac0,与x轴有唯一个交点,有两个相等的解x1=x2=,b2-4ac=0,与x轴没有交点,没有实数根,b2-4ac0,例(1)如果关于x的一元二次方程 x2-2x+m=0有两个相等的实数根,则m=,此时抛物线 y=x2-2x+m与x轴有个交点.,(2)已知抛物线 y=x2 8x+c的顶点在 x轴上,则c=.,1,1,16,(3)一元二次方程 3 x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3 x2+x-10与x轴的交点坐标是.,(-2、0)(5/3、0),1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的 形状相同,顶点在直线x=1上,

11、且顶点到x轴的距离 为5,请写出满足此条件的抛物线的解析式.,解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同 a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,顶点为(1,5)或(1,-5)所以其解析式为:(1)y=(x-1)2+5(2)y=(x-1)2-5(3)y=-(x-1)2+5(4)y=-(x-1)2-5 展开成一般式即可.,7二次函数的综合运用,2.若a+b+c=0,a0,把抛物线y=ax2+bx+c向下平移 4个单位,再向左平移5个单位所到的新抛物线的 顶点是(-2,0),求原抛物线的解析式.,分析:,(1)由a+b+c=0可知,原抛物线的图象经过(1,0),(2)新抛物线向右平移5个单位,再向上平移4个单位即得原抛物线,答案:y=-x2+6x-5,http:/,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号