《华师大八年级(上)_教案_第14章_勾股定理教案(林中).doc》由会员分享,可在线阅读,更多相关《华师大八年级(上)_教案_第14章_勾股定理教案(林中).doc(9页珍藏版)》请在三一办公上搜索。
1、安岳县林凤镇初级中学八年级上册数学教案第十四章 勾股定理14.1 勾股定理教学目标:知识目标1.在探索基础上掌握勾股定理。2.掌握直角三角形中的边边关系和三角之间的关系。能力目标1.已知两边,运用勾股定理列式求第三边。2.应用勾股定理解决实际问题(探索性问题和应用性问题)。3.学会简单的合情推理与数学说理,能写出简单的推理格式。情感态度目标学生通过适当训练,养成数学说理的习惯,培养学生参与的积极性,逐步体验数学说理的重要性。重点难点:重点:在直角三角形中,知道两边,可以求第三边。难点:应用勾股定理时斜边的平方等于两直角边的平方和。14.1勾股定理(一)本课目标:1在探索基础上掌握勾股定理。2.
2、掌握直角三角形中的边边关系和三角之间的关系。教学过程:1.情境导入从观察课本中图14.1.1和图14.1.2入手引入勾股定理。2、课前热身观看图14.1.1和图14.1.2,数一数三块面积之间的关系,体验勾股定理的内涵。3、合作探究(1)整体感知由观察课本中图14.1.1和图14.1.2入手得出勾股定理;通过在图14.1.3中动手操作证实勾股定理;通过对本课本第50页例1的探索求解巩固勾股定理。(2)四边互动互动1:师:你们能数出图14.1.1中三块面积P、Q、R的数值吗?数数看.生:根据图形进行操作由此得出:以直角三角形两直角边为边长的两个正方形的面积和等于以斜边为边长的正方形的面积。 师生
3、共同归纳: ,即两直角边的平方和等于斜边的平方.互动2:师:你们能数出图14.1.2中三块面积P、Q、R的数值吗?数数看生:根据图形进行操作由此得出:以直角三角形两直角边为边长的两个正方形的面积和等于以斜边为边长的正方形的面积师生共同归纳, ,即两直角边的平方和等于斜边的平方互动3:师:由上述操作你发现了一般规律了吗?生:略明确:在一个直角三角形中:两直角边的平方和等于斜边的平方。互动4:师:展示课本中图14.1.3.师:在上图中画出直角三角形ABC,用直尺量量斜边是多长好吗?生:每人画出一个三角形,并动手测量后在小组中交流讨论,然后举手回答问题。明确:师生合作通过操作证明勾股定理:.例题教学
4、:例1:如图14.1.4,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底端B的距离AB.(精确到0.01米)师:你会用勾股定理解这道题吗?试试看生:操作后相互交流。明确:在一个直角三角形中:两直角边的平方和等于斜边的平方。注:在实际问题中往往需要求取近似值。解:略。4、达标反馈(1)在直角ABC中,C=,a=3,b=4,则c值是 ,理由是 (2)在直角ABC中,B=,a=3,b=4,则c值是 ,理由是 (3)在ABC中, a=3,b=4,c=5,则ABC是 5、学习小结(1)内容总结直角三角形三边满足勾股定理:两直角边的平方和等于斜边的平方。 注意:应用勾股定理
5、时应特别注意哪个角是直角。(2)方法归纳 让学生经历观察、操作、交流合作、合理猜想等体验吸取知识。6、巩固练习课本第14.2中第1、2题。课后作业:教学反思:14.1勾股定理(二)本课目标1.通过拼图,用面积的方法说明勾股定理的正确性。2.通过实例应用勾股定理,培养学生的知识应用技能。教学过程1.情境导入制作相同的直角三角形纸板。2、课前热身 让学生分组练习用四块相同的直角三角形板拼成正方形。3、合作探究(1)整体感知通过相同直角三角形的拼图体验,让学生找出多种不同的方法来说明勾股定理的正确性,通过运用勾股定理解题,训练培养学生应用知识的技能,通过阅读材料让学生体验勾股定理的妙用。(2)四边互
6、动:出示课本中图14.1.5和14.1.6。互动1:师:你会拼出如图14.1.6所示的图形吗?生:讨论交流,举手回答问题。师:你能运用面积列出等式说明勾股定理吗?生:讨论交流,举手回答问题,并尝试说理。明确:大正方形面积减去小正方形面积等于四个直角三角形面积。 大正方形面积减去四个直角三角形面积等于小正方形面积。 大正方形面积等于四个直角三角形面积加上小正方形面积。 结论是。互动2:出示课本中图14.1.7和14.1.8.师:你会拼出图14.1.7吗生:动用操作师:你会用面积等式说明勾股定理吗?生:讨论交流,举手回答并说理。明确:大正方形面积减去小正方形面积等于四个直角三角形面积。 大正方形面
7、积减去四个直角三角形面积等于小正方形面积。 大正方形面积等于四个直角三角形面积加上小正方形面积。 结论是。互动3:师:出示如右图所示的图形 你会拼成如图所示的图形吗?它需要几块三角板?生:独立尝试后,在小组之间交流,并举手回答问题师:你会列出面积等式说明勾股定理吗?生:讨论交流,举手回答问题,并尝试说理明确:梯形面积减去等腰直角三角形面积等于两直角三角形面积。梯形面积减去两个直角三角形面积等于等腰直角三角形。梯形面积等于两个直角三角形面积加上等腰直角三角形的面积。结论是。例题教学:例2如图14.1.9,为了求出湖两岸的A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.
8、通过测量,得到AC长160米,BC长128米.问从点A穿过湖到点B有多远?解在直角三角形ABC中,AC160,BC128,根据勾股定理可得= 96(米)答:从点A穿过湖到点B有96米.明确:在直角三角形中,两直角边的平方和等于斜边的平方:4、达标反馈配套练习。5、学习小结(1)内容总结 可以通过拼图,得到正方形,再根据面积相等列出等式,从而验证勾股定理; 运用勾股定理可以解决许多实际问题; 运用三角形相似或全等知识能证明直角三角形中的勾股定理。(2)方法归纳通过动手操作、合作交流和亲身体验培养学生食好的学习方法,逐步养成优良的学习。6、巩固练习 课本练习课后作业教学反思14.1勾股定理(三)教
9、学目标1、探索并掌握直角三角形判定方法.2、经历勾股定理的逆定理的探究过程,了解勾股定理的逆定理与勾股定理的互逆性.3、通过对勾股定理逆定理的探究,激发学生学习数学的兴趣和创新精神.4、通过三角形三边的数量关系来判断它是否为直角三角形,培养学生数形结合的思想.教学过程一、创设情境,导入课题1、直角三角形有哪些性质?(从边、角两方面考虑)(1)有一个角是直角;(2)两个锐角的和为90(互余 );(3)两直角边的平方和等于斜边的平方. 反之,一个三角形满足什么条件,才能是直角三角形呢?2、一个三角形满足什么条件才能是直角三角形?(板书课题)(1)有一个角是直角的三角形是直角三角形; (板书)(2)
10、有两个角的和为90的三角形是直角三角形; (板书)(3)如果一个三角形的三边a ,b ,c 满足a2 +b 2=c2 ,那么这个三角形是直角三角形?二、动手实践,发现新知1、试用小塑料棒拼出三边长度分别为如下数据的三角形,猜想它们是些什么形状的三角形?(按角分类)(1)3,4,4 锐角三角形 (2)2,3,4 钝角三角形 (3)3,4,5 直角三角形 使用“几何画板”演示(拼图 / 还原 / 度量),加深学生对拼出三角形形状的认识.2、请比较上述每个三角形的两条较短边的平方和与最长边的平方之间的大小关系. (1)3,4,4 锐角三角形 3242 42(2)2,3,4 钝角三角形 2232 42
11、(3)3,4,5 直角三角形 3242 = 523、从勾股定理到勾股定理的逆定理:反过来勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.(板书)勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.注意:(1)勾股定理与勾股定理的逆定理之间的关系;(2)“勾股定理的逆定理”严格的证明以后会学到;(3)“勾股定理的逆定理”的用途.4、使用“几何画板”演示:如果三角形的三边长a、b、c(这里ac,bc)满足a2+b2c2,那么这个三角形不是直角三角形.在ABC中,设AB是三边中最长边,拖动点C,观察AC2+BC2、AB2的大小
12、关系与ACB的度数.结论:设AB是ABC中三边中最长边,则AC2+BC2AB2 ACB为锐角三、范例点击,提高认知例1:判断由线段a,b,c组成的三角形是不是直角三角形? (1)a=7,b=25,c=24; (2) a=13,b=11,c=9解:(1)最大边为25 a2+c2=72+242=49+576 =625 b2=252 =625 a2+c2= b 2 以7,25,24为边长的三角形是直角三角形. (2)学生板演例2、已知:如图,四边形ABCD中,B900,AB3,BC4,CD12,AD13.求四边形ABCD的面积.(师生共同分析,教师板演)四、随堂练习,巩固深化练习1、下面以a、b、c
13、为边长的ABC是不是直角三角形?如果是请指明哪一个角是直角?(1)a=6 b=8 c=10 .(2)a=12 b=8 c=15 .(3)a=8 b=6 c=5 .(4)a=1 b=2 c= .练习2、满足下列条件ABC,不是直角三角形的是 ( ) A、b2 = a2 c2 B、abc=345 C、C=AB D、AB C =345五、课堂总结,发展潜能通过本节课的学习,同学们有哪些收获?1、 勾股定理的逆定理的内容;、判定一个三角形是直角三角形有哪些方法(从角、边两个方面来总结);、勾股定理与它的逆定理之间的关系.、数形结合的数学思想(通过三角形三边长间的数量关系来判断一个三角形是否为直角三角形
14、).课后作业教学反思 14.2 勾股定理的应用教学目标知识目标 (1)了解勾股定理的作用是“在直角三角形中已知两边求第三边”;而勾股逆定理的作用是由“三角形边的关系得出三角形是直角三角形”. (2)掌握勾股定理及其逆定理,运用勾股定理进行简单的长度计算. 过程性目标 (1)让学生亲自经历卷折圆柱. (2) 让学生在亲自经历卷折圆柱中认识到圆柱的侧面展开图是一个长方形(矩形). (3)让学生通过观察、实验、归纳等手段,培养其将“实际问题转化为应用勾股定理解直角三角形的数学问题”的能力.重点、难点重点:勾股定理的应用.难点:将实际问题转化为“应用勾股定理及其逆定理解直角三角形的数学问题”.教学过程
15、复习练习,引出课题例1、在RtABC中,两条直角边分别为3,4,求斜边c的值?答案:c=5.例2、在RtABC中,一直角边分别为5,斜边为13,求另一直角边的长是多少?答案:另一直角边的长是 12. 通过简单计算题的练习,帮助学生回顾勾股定理,加深定理的记忆理解,为新课作好准备 小结:在上面两个小题中,我们应用了勾股定理:在RtABC中,若C90,则 c2= a2+b2. 加深定理的记忆理解,突出定理的作用.新课讲解勾股定理能解决直角三角形的许多问题,因此在现实生活和数学中有着广泛的应用例1如图14.2.1,一圆柱体的底面周长为20cm,高为4cm,是上底面的直径一只蚂蚁从点A出发,沿着圆柱的
16、侧面爬行到点C,试求出爬行的最短路程分析:蚂蚁实际上是在圆柱的半个侧面内爬行大家用一张白纸卷折圆柱成圆柱形状,标出A、B、C、D各点,然后打开,蚂蚁在圆柱上爬行的距离,与在平面纸上的距离一样AC之间的最短距离是什么?根据是什么?(学生回答)根据“两点之间,线段最短”,所求的最短路程就是侧面展开图矩形ASBCD对角线AC之长我们可以利用勾股定理计算出AC的长。解 如图,在Rt中,底面周长的一半cm,根据勾股定理得(提问:勾股定理) AC(cm)(勾股定理)答: 最短路程约为cm例2一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图14.2.3的某工厂,问这辆卡车能否通过该工厂的
17、厂门?图14.2.3分析由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度是否小于CH如图.所示,点D在离厂门中线0.8米处,且CD, 与地面交于H解 :OC1米(大门宽度一半),OD0.8米(卡车宽度一半) 在RtOCD中,由勾股定理得.米,C.(米).(米)因此高度上有0.4米的余量,所以卡车能通过厂门小结本节课我们学习了应用勾股定理来解决实际问题.在实际当中,长度计算是一个基本问题,而长度计算中应用最多、最基本的就是解直角三角形,利用勾股定理已知两边求第三边,我们要掌握好这一有力工具.课堂练习1. 如图,从电杆离地面5米处向地面拉一条7米长的钢缆,求地面钢缆固定点A到电杆底部B的距离2. 现准备将一块形为直角三角形的绿地扩大,使其仍为直角三角形,两直角边同时扩大到原来的两倍,问斜边扩大到原来的多少倍?课后作业教学反思92011年下期教案