《毕业设计论文基于小波图像去噪的方法研究.doc》由会员分享,可在线阅读,更多相关《毕业设计论文基于小波图像去噪的方法研究.doc(46页珍藏版)》请在三一办公上搜索。
1、毕业论文基于小波变换的图像去噪方法的研究学生姓名: 学号: 信息与通信工程系学 院: 信息商务学院 电气工程及其自动化系 名: 专 业: 指导教师: 2011年 5 月中北大学信息商务学院2011届毕业论文基于小波变换的图像去噪方法的研究摘要图像是人类传递信息的主要媒介。然而,图像在生成和传输的过程中会受到各种噪声的干扰,对信息的处理、传输和存储造成极大的影响。寻求一种既能有效地减小噪声,又能很好地保留图像边缘信息的方法,是人们一直追求的目标。小波分析是局部化时频分析,它用时域和频域联合表示信号的特征,是分析非平稳信号的有力工具。它通过伸缩、平移等运算功能对信号进行多尺度细化分析,能有效地从信
2、号中提取信息。随着小波变换理论的完善,小波在图像去噪中得到了广泛的应用,与传统的去噪方法相比小波分析有着很大的优势,它能在去噪的同时保留图像细节,得到原图像的最佳恢复。本文对基于小波变换的图像去噪方法进行了深入的研究分析,首先详细介绍了几种经典的小波变换去噪方法。对于小波变换模极大值去噪法,详细介绍了其去噪原理和算法,分析了去噪过程中参数的选取问题,并给出了一些选取依据;详细介绍了小波系数相关性去噪方法的原理和算法;对小波变换阈值去噪方法的原理和几个关键问题进行了详细讨论。最后对这些方法进行了分析比较,讨论了它们各自的优缺点和适用条件,并给出了仿真实验结果。在众多基于小波变换的图像去噪方法中,
3、运用最多的是小波阈值萎缩去噪法。传统的硬阈值函数和软阈值函数去噪方法在实际中得到了广泛的应用,而且取得了较好的效果。但是硬阈值函数的不连续性导致重构信号容易出现伪吉布斯现象;而软阈值函数虽然整体连续性好,但估计值与实际值之间总存在恒定的偏差,具有一定的局限性。鉴于此,本文提出了一种基于小波多分辨率分析和最小均方误差准则的自适应阈值去噪算法。该方法利用小波阈值去噪基本原理,在基于最小均方误差算法LMS和Stein无偏估计的前提下,引出了一个具有多阶连续导数的阈值函数,利用其对阈值进行迭代运算,得到最优阈值,从而得到更好的图像去噪效果。最后,通过仿真实验结果可以看到,该方法去噪效果显著,与硬阈值、
4、软阈值方法相比,信噪比提高较多,同时去噪后仍能较好地保留图像细节,是一种有效的图像去噪方法。关键词:小波变换,图像去噪,阈值,阈值函数 The method Based on the wavelet image denoisingAbstractImage is an important information source for human beings. However, in the course of its acquisition and transmission, noise is often introduced, which makes great influence to
5、the processing, delivering and saving of information. Therefore, hunting for a method of denoising effectively and keeping the edge information simultaneously is a goal people have been pursuing all the time. Wavelet analysis is local analysis in the time domain and frequency domain, which represent
6、s the signal property using combination of the time domain and frequency domain ,which represents the signal property using combination of the time domain and frequency domain. It is a useful tool to analyze the unstationary signal that important multi-scale analysis to the signal by the translation
7、 and diatom of the moocher wavelet ,so it can effectively extract information from signal .Recently ,with the improvementof wavelet theory ,wavelet analysis has applied to image denoising successfully Compared with traditional methods, wavelet has incomparable advantage in image denoising. It can no
8、t only wipe off noise but also retain the image details. Based on the profound analysis on wavelet image denoising ,several classical wavelet denoising methods ate introduced in detail. The principles and algorithm of wavelet transform modulus maxima denoising method are introduced in detail and an
9、analysis of the choice of some parameters in the process of denoising is made in detail. The principles and the algorithm of the relativity of the wavelet coefficient denoising method are introduced .Some key problem on denoising method based on wavelet threshold are discussed in detail. The advanta
10、ges and disadvantages of these methods and their applicable condition are discussed at last and the simulation experiments show the results of image denoising. Keywords: Wavelet Analysis; Image Denoising; Threshold; Threshold Function中北大学信息商务学院2011届毕业论文目 录1 绪论11.1 引言11.2 图像去噪概述 11.3 图像噪声分类 21.4 图像去噪
11、效果的评价 31.4.1 主观评价 31.4.2 客观评价 41.5 基于小波变换的图像去噪技术研究现状51.6 主要工作62 小波分析理论基础 62.1 小波分析的产生12 72.2 小波变换 82.2.1 连续小波变换 13,1482.2.2 离散小波变换15 112.2.3 多分辨率分析与滤波器组132.2.4 图像的小波变换及其Mallat算法162.2.5 图像的双正交小波变换202.3 小波变换与傅里叶变换的比较20212.4 本章小结223 传统去噪方法 233.1 空域滤波233.2 频域低通滤波法23 254 基于小波变换的图像去噪技术274.1 常见的去噪方法274.2 基
12、于小波阈值的混合滤波图像去噪方法 314.2.1 算法介绍 314.2.2 实验结果与分析 324.3 基于小波变换的图像去噪有关问题的分析334.3.1 小波变换去噪算法中分解层数对去噪效果的影响 344.3.2 小波变换去噪算法中小波基对去噪效果的影响 354.4 本章小结375 结论参考文献 39致谢 41411 绪论1.1 引言图像是人类传递信息的主要媒介。图像以其信息量大,传输速度快,作用距离远等一系列优点成人人类获取信息的重要来源和利用信息的重要手段。是反映自然界客观事物的,是人类认识世界和自我的重要途径。早期人们为了真实反映自然景物和人物的原貌,对拍摄到的黑白照片进行手工上色,这
13、就是最原始的图像处理技术。随着计算机技术的发展,原来靠手工完成的图像处理现在可以完全依靠计算机来实现,为了使计算机可以直接对图像进行自动处理,必须对图像进行数字化,从此数字图像处理技术也随之应运而生。数字图像在我们日常生活中起着非常重要的作用,它与我们的日常生活息息相关,例如在卫星、电视、核磁共振、计算机视觉、地球信息系统以及天文学中应用非常广泛。一般情况下采集到的数字图像是含有噪声的。噪声1可以理解为“妨碍人们感觉器官对所接收的信源信息理解的因素”。图像在生成和传输的过程中灰受到各种噪声的干扰,对信号的处理、传输和存储造成极大的影响。数字图像之所以含有噪声这是因为在图像的采集、获取、编码和传
14、输的过程中,所有的图像均不同程度地被可见或不可见的噪声“污染”。对于这种“污染”,如果信噪比(SNR)低于一定水平,就会影响图像场景内容的表示,直接导致图像质量的下降。除了视觉质量上下降外,噪声还可能掩盖一些重要的图像细节,使图像的熵增大,从而对于图像数据的有效压缩起到了一定的妨碍作用。对于图像在采集、获取过程造成的“污染”,我们虽然尽量提高硬件设备以获取质量更高的图像,但图像传感器的截止频率总是有一定的,受硬件水平和价格的限制,且图像在编码和传输过程中造成的“污染”,必需采取有效的降噪技术才能提高图像的质量。1.2 图像去噪概述现实中的数字图像在数字化和传输过程中常受到成像设备与外部环境噪声
15、干扰等影响,称为含噪图像。取出或减轻在获取数字图像中的噪声称为图像去噪。图像去噪可以在空间域内进行,也可以在变换域内进行。不管在哪种域内进行去噪,但它们都是基于噪声和信号在频域上的不同分布规则为依据的,一般情况下,有用信号是主要分布在低频区域的,而噪声则是多分布在高频区域的,然而由于图像的细节也是分布在高频区域的,因此如何在减少图像噪声的同时保留图像的细节问题便成为图像去噪技术的研究目标。对图像进行去噪最初主要是在空域内进行的,图像空域去噪方法很多,主要是通过各种滤波器对图像进行去噪。例如均值滤波器、顺序统计滤波器、维纳滤波器等。为了进一步提高去噪的效果,在变换域中进行降噪处理成为有效的方法,
16、图像变换域去噪就是对图像进行某一种变换,然后将图像从时域变换到变换域中,再对变换域中的图像变换系数按照某种方法进行处理,最后再对处理后的系数按照某种方法进行反变换,这样就实现了将图像去除图像噪声的目的。将图像从时域转换到变换域的变换方法很多,例如傅立叶变换、小波变换等等。不同的变换方法在变换域得到的系数都是有不同特点的,根据系数的特点合理的处理变换系数再通过反变换将图像还原到时域,往往就可以有效地达到去除噪声的目的。 小波变换是在短时傅立叶变换的基础上发展起来的一种新型的变换方法。小波变换具有多分辨率分析的特点,在时域、频域都具有较强的表征信号局部特征的能力,因此基于小波分析的图像去噪技术已成
17、为图像去噪的一个重要方法。1.3 图像噪声分类目前大多数数字图像系统中,输入图像都是采用先冻结再扫描方式将多维图像变成一维电信号,再对其进行处理、存储、传输等加工变换。最后往往还要在组成多维图像信号,而图像噪声也将同样受到这样的分解和合成。噪声对图像信号幅度、相位的影响非常复杂,有些噪声和图像信号是相互独立不相关的,而有些则是相关的,并且噪声本身之间也可能相关。因此要有效降低图像中的噪声,必须针对不同的具体情况采用不同方法,否则就很难获得满意的去噪效果。一般图像去噪中常见的噪声有以下几种:(1)加性噪声 加性噪声和图像信号强度是不相关的,如图像在传输过程中引进的“信道噪声”电视摄像机扫描图像的
18、噪声等。这类带有噪声的图像可看成是理想的没有被噪声“污染”的图像与噪声的和,即 (1.1)(2)乘性噪声 图像的乘性噪声和图像的加性噪声是不一样的,加性噪声和图像信号强度是不相关的,而乘性噪声和图像信号是相关的,往往随着图像信号的变化而发生变化,如飞点扫描图像中的噪声、电视扫描光栅、胶片颗粒噪声等,这类噪声和图像的关系是 (1.2)(3)量化噪声 量化噪声是数字图像的主要噪声源,它的大小能够表示出数字图像和原始图像的差异程度,有效减少这种噪声的最好办法就是采用按灰度级概率密度函数选择量化级的最优量化措施。(4)“椒盐”噪声 此种噪声很多,例如在图像切割过程中引起的黑图像上的白点、白图像上的黑点
19、噪声等,还有在变换域引入的误差,在图像反变换时引入的变换噪声等。实际生活中还有多种多样的图像噪声,如皮革上的疤痕噪声、气象云图上的条纹噪声等等。这些噪声一般都是简单的加性噪声,不会随着图像信号的改变而改变。这为实际的去噪工作提供了依据。图像去噪效果的评价。1.4 图像去噪效果的评价在图像去噪的处理中,常常需要评价去噪后图像的质量。这是因为一个图像经过去噪处理后所还原图像的质量好坏,对于人们判断去噪方法的优劣有很重要的意义。目前对图像的去噪质量评价主要有两类常用的方法:一类是人的主观评价,它由人眼直接观察图像效果,这种方法受人为主观因素的影响比较大。目前由于对人的视觉系统性质还没有充分的理解,对
20、人的心理因素还没有找到定量分析方法。因此主观评价标准还只是一个定性的描述方法,不能作定量描述,但它能反映人眼的视觉特性。另一类是图像质量的客观评价。它是一种数学上统计的处理方法,其缺点是它并不是总能反映人眼的真实感觉。一种折衷的方法是在衡量图像“去噪”算法的优劣时,将主观与客观两种标准结合起来考虑。1.4.1 主观评价主观评价通常有两种2:一种是作为观察者的主观评价,这是由选定的一组人对图像直接用肉眼进行观察,然后分别给出其对所观察的图像的质量好或坏的评价,再综合全组人的意见给出一个综合结论。它只是一种定性的方法,没有定量的标准,而且受到观察者的主观因素的影响,评价结果有一定的不确定性。另一种
21、是随着模糊数学的发展,可以用模糊综合评判方法来尽量减少主观因素的影响,实现对图像质量近似定量的评价,不过它仍然没有完全消除主观不确定性的影响,其定量计算公式中的参数往往要依赖专家经验确定。国际上通行的有5级评分的质量尺度和妨碍尺度3,如表1.1所示。表1.1 图像主观评价尺度评分表效果得分质量尺度妨碍尺度5非常好丝毫看不出图像质量变坏4好能看出图像质量变坏,不妨碍观看3一般能清楚地看出图像质量变坏,对观看稍有妨碍2差对观看有妨碍1非常差非常严重地妨碍观看注:这些都是由观察者根据自己的经验来对被评价图像做出质量判断。在有些情况下,也可以提供一组标准图像作为参考,帮助观察者对图像质量做出合适的评价
22、。一般来说,对非专业人员多采用质量尺度,对专业人员则使用妨碍尺度为宜。1.4.2 客观评价 尽管主观对去噪后图像质量的评价是比较权威的方式,但是在一些研究场合,或者由于试验条件的限制,也希望对去噪图像质量有一个定量的客观描述。图像质量的客观评价由于着眼点不同而有多种方法,这里介绍的是一种经常使用的所谓的逼真度测量。对于彩色图像逼真度的定量表示是一个十分复杂的问题3。目前应用得较多的是对黑白图像逼真度的定量表示。合理的测量方法应和主观实验结果一致,而且要求简单易行。(1)均方误差: (1.3)(2)信噪比: (1.4)其中表示重建恢复后图像像素的灰度值,表示原始图像各点的灰度值;表示重建恢复后图
23、像灰度值的方差。(3)峰值信噪比: (1.5)式中表示处理后的图像的灰度,表示原始图像的灰度,表示图像像素的个数。单位为dB。在实际应用中,峰值信噪比是图像处理中最常用的图像质量评价的客观标准。1.5 基于小波变换的图像去噪技术研究现状小波分析与傅立叶分析有着密切的联系,是傅立叶分析划时代发展的结果。近些年来,小波理论得到了非常迅速的发展,基于小波分析的图像去噪技术也随着小波理论的不断完善取得了较好的效果。上个世纪八十年代Mallet 提出了 MRA(Multi_Resolution Analysis),并首先把小波理论运用于信号和图像的分解与重构,利用小波变换模极大值原理进行信号的奇异性检测
24、,提出了交替投影算法用于信号重构,为小波变换用于图像处理奠定了基础4。后来,人们根据信号与噪声在小波变换下模极大值在各尺度上的不同传播特性,提出了基于模极大值去噪的基本思想。1992年,Donoho和Johnstone提出了“小波收缩”,它较传统的去噪方法效率更高。“小波收缩”被 Donoho和Johnstone证明是在极小化极大风险中最优的去噪方法,但在这种方法中最重要的就是确定阈值。1995年,Stanford大学的学者D.L.Donoho和I.M.Johnstone提出了通过对小波系数进行非线性阈值处理来降低信号中的噪声5。从这之后的小波去噪方法也就转移到从阈值函数的选择或最优小波基的选
25、择出发来提高去噪的效果。影响比较大的方法有以下这么几种:Eero P.Semoncelli和Edward H.Adelson提出的基于最大后验概率的贝叶斯估计准则确定小波阈值的方法6;Elwood T.Olsen等在处理断层图像时提出了三种基于小波相位的去噪方法:边缘跟踪法、局部相位方差阈值法以及尺度相位变动阈值法;学者Kozaitis结合小波变换和高阶统计量的特点提出了基于高阶统计量的小波阈值去噪方法7;G.P.Nason等利用原图像和小波变换域中图像的相关性用GCV(general cross-validation)法对图像进行去噪;Hang.X和Woolsey等人提出结合维纳滤波器和小波
26、阈值的方法对信号进行去噪处理8,Vasily Strela等人将一类新的特性良好的小波(约束对)应用于图像去噪的方法9;同时,在19世纪60年代发展的隐马尔科夫模型(Hidden Markov Model),是通过对小波系数建立模型以得到不同的系数处理方法;后又有人提出了双变量模型方法10,它是利用观察相邻尺度间父系数与子系数的统计联合分布来选择一种与之匹配的二维概率密度函数。这些方法均取得了较好的效果,对小波去噪的理论和应用奠定了一定的基础。总之,由于小波具有低墒性、多分辨率、去相关性、选基灵活性等特点,小波理论在去噪领域受到了许多学者的重视,并获得了良好的效果。但如何采取一定的技术消除图像
27、噪声的同时保留图像细节仍是图像预处理中的重要课题。目前,基于小波分析的图像去噪技术已成为图像去噪的一个重要方法。1.6 主要工作小波理论虽经过多年发展,并取得了许多非常重要的研究成果。但小波分析的应用潜力仍然很大,仍旧存在着一些需要解决问题。本文在前人提出的有关小波应用的基础上,展开更加系统、深入的分析和研究。首先对传统的去噪技术进行了一定的介绍;然后在此基础上,本文提出了基于小波阈值的混合滤波图像去噪方法,通过实验结果表明该方法的正确性,其去噪效果优于传统的小波图像去噪。 第一章为绪论,首先简单介绍了图像去噪的意义,噪声的特性和图像质量的评价方法。然后,介绍全文的结构安排和本文所取得的研究成
28、果。第二章主要介绍连续小波变换、离散小波变换、小波变换性质和多分辨分析。并介绍了图像小波变换情况,为以后几个章节中图像小波去噪奠定一定的理论基础。第三章主要对传统的去噪方法进行了总结和对比,主要列举了空域滤波法和频域低通滤波法,指出其去噪的不足。第四章介绍了小波去噪的发展历程和小波去噪的分类,在此基础上对传统的小波去噪技术进行了一定的改进,提出基于小波阈值的混合滤波图像去噪方法,用实验验证了该方法的可行性,并对小波变换的图像去噪有关问题进行了分析,提出在去噪过程中应注意的一些事项。第五章为结束语,对全文加以总结。2 小波分析理论基础傅立叶分析是19世纪20年代法国数学家Fourier提出的一种
29、经典时频分析理论,1965年Cooley,Turkey提出的快速傅立叶变换算法推动傅立叶分析从理论走向实践,使其在信号处理等诸多领域获得广泛应用。傅立叶分析为信号的时域描述和频域描述之间的相互转换建立了桥梁,其实质是将信号分解成不同频率的正弦信号的叠加,从而刻画出信号的频率结构分布。傅立叶变换将时、频两域截然分开是以信号的的频率特性时不变和统计特性平稳为前提条件的。然而很多非平稳信号,如音乐、语音信号等它们的频域特性都随着时间的变化而改变,也就很难表示出这些信号在任一时刻附近的频率特征。这种情况下,就暴露出经典傅立叶分析的局限性,时、频两域不能截然分开,同时在任何有限频段上信息无法刻画任意小范
30、围内的空域信号11。为了尽可能的反映频域特征随时(空)间的变化,前人做了很多探索,将时(空)、频两域结合起来对信号予以描述,提出了时频局部化分析方法,如短时傅立叶变换,也称窗口傅立叶变换,特别是Dennis Gabor选择Gauss函数作为最佳窗口函数,即著名的Gabor变换。窗口傅立叶变换实质上是信号分析窗口面积和形状均固定的时频局部化分析,一定程度上克服了傅立叶变换不能同时进行时间频域的局部分析,在非平稳信号的分析中起到了很好的作用。但由于窗口傅立叶变换所定义的窗函数的大小和形状均与时间和频率无关而保持不变,所以窗口傅立叶变换只是单一分辨率的分析。信号的频率和周期是成反比的,要获取信号高频
31、成份的细致分辨应该使用较窄的时(空)间窗,要获取信号低频成份的粗疏分辨,应该使用较宽的(空)间窗,显然窗口傅立叶变换不具备这种“弹性”。针对这种情况,在20世纪80年代兴起的小波分析是一种窗口面积固定但形状可变的时频局部化分析方法,即具有对信号的自适应性。在信号低频部分具有较高的频率分辨率和较低的时(空)间分辨率,在信号的高频部分具有较低的频率分辨率和较高的时(空)间分辨率,所以小波分析主要特点是通过变换能够充分突出问题某些方面的特征,被誉为数学上的显微镜。特别是近年来,小波变换作为一种数学理论和方法在科学技术和工程界引起了越来越多的关注和重视。尤其在工程应用领域,特别是在信号处理、图像处理、
32、模式识别、语音识别、量子物理、地震勘测、流体力学、电磁场、CT成像、机器视觉、机械状态监控与故障诊断、分形、数值计算等领域被认为近年来在工具和方法上的重大突破。2.1 小波分析的产生12 小波分析的思想最早出现在1910年Haar提出了小波规范正交基。20世纪30年代,Littlewood和Paley对Fourier级数建立了二进制频率分量分组理论(L-P理论),即最早的多尺度分析思想。1946年,Gabor提出窗口Fourier变换,对Fourier变换的不足起到了一定的弥补作用。后来Calderon,Zygmund,Stein和Weiss等人将L-P理论推广到高维,并建立了奇异积分算子理论
33、。1965年,Calderon给出了再生公式。1974年,Calfmann对Hardy空间给出了原子分解。1975年,Calderon用他早先提出的再生公式给出了的原子分解,其形式已接近小波展开。1981年,Stromberg对Haar系进行了改造,为小波分析奠定了基础。1984年,Morlet在分析地震波的局部性时,发现传统的Fourier变换不具有时-频局部性,很难达到实际需要,因此他首先提出了小波分析的概念,并用于信号分解中。随后,Grossman对Morlet的方法进行了研究。1985年,Meyer创造性地构造出了规范正交基,后被称为Meyer基。1986年Meyer和Lemarie提
34、出了多尺度分析的思想。后来信号分析专家Mallat提出了多分辨分析的概念,给出了构造正交小波基的一般方法,并以多分辨分析为基础提出了著名的快速小波算法Mallat算法。Mallat算法的提出标志着小波理论获得突破性进展,从此,小波分析从理论研究走向了应用研究。通过小波分析,可以将各种交织在一起的由不同频率组成的混合信号分解成不同频率的块信号,能够有效地解决诸如数值分析、信号分析、图像处理、量子理论、地震勘探、语音识别、计算机视觉、CT成像、机械故障诊断等问题。因此,小波分析在图像去噪方面有着广泛地应用。2.2 小波变换2.2.1 连续小波变换13,14(1)连续小波基函数所谓小波(Wavele
35、t),即存在于一个较小区域的波。小波函数的数学定义是:设为一平方可积函数,即,若其傅立叶变换满足: (2.1)时,则称为一个基本小波或小波母函数,并称上式是小波函数的可容许条件。根据小波函数的定义,小波函数一般在时域具有紧支集或近似紧支集,即函数的非零值定义域具有有限的范围,这即所谓“小”的特点;另一方面,根据可容许性条件可知,即直流分量为零,因此小波又具有正负交替的波动性。 将小波母函数进行伸缩和平移,设其伸缩因子(亦称尺度因子)为,平移因子为,并记平移伸缩后的函数为,则: (2.2)并称为参数和小波基函数。由于和均取连续变换的值,因此又称为连续小波基函数,它们是由同一母函数经伸缩和平移后得
36、到的一组函数系列。定义小波母函数的窗口宽度为,窗口中心为,则可以求得连续小波基函数的窗口中心及窗口宽度分别为: (2.3) 设是的傅立叶变换,频域窗口中心为,窗口宽度为,的傅立叶变换为,则有: (2.4)所以此时频域窗口中心及窗口宽度分别为: (2.5)由此可见,连续小波的时、频窗口中心和宽度均是尺度因子的函数,均随着的变化而伸缩,并且还有 (2.6)即连续小波基函数的窗口面积是不变的,这正是Heisenberg测不准原理。将不同、值下的时频窗口绘在同一个图上,就得到小波基函数的相平面(如图2.1所示)。图2.1 小波基函数的相平面(2)连续小波变换将空间的任意函数在小波基下进行展开,称其为函
37、数的连续小波变换CWT,变换式为: (2.7)当小波的容许性条件成立时,其逆变换为: (2.8)其中为的容许性条件。另外,在小波变换过程中必须保持能量成比例,即: (2.9)由CWT的定义可知,小波变换和傅立叶变换一样,也是一种积分变换,其中为小波变换系数。可见小波变换对函数在小波基上的展开具有多分辨率的特性,这种特性正是通过缩放因子和平移因子来得到的。根据、的不同,可以得到小波变换下不同时、频宽度的信息,从而实现对信号的局部化分析。连续小波变换具有以下重要性质: 线性性:一个多分量信号的小波变换等于各个分量的小波变换之和。 平移不变性:若的小波变换为,则的小波变换为。 伸缩共变性:若的小波变
38、化为,则的小波变换为。 自相似性:对应于不同尺度因子和不同平移因子的连续小波变换之间是自相似性的。 冗余性:连续小波变换中存在信息表述的冗余度redundancy,小波变换的冗余性也是自相似性的直接反映,它主要表现在以下两个方面:1)由连续小波变换恢复原信号的重构分式不是唯一的。也就是说,信号的小波变换与小波重构不存在一一对应关系,而傅立叶变换与傅立叶反变换则是一一对应的。2)小波变换的核函数即小波基函数并不是唯一的,即存在许多可能的选择(如:它们可能是非正交小波,正交小波,双正交小波,甚至允许是彼此线性相关的)。小波的选择并不是任意的,也不是唯一的。它的选择应满足定义域是紧支撑的,即在一个很
39、小的区间之外,函数值为零,函数具有速降特性,以便获得空间局域化。另外,它还要满足平均值为零。也就是说,小波应具有振荡性,而且是一个迅速衰减的函数。一个一维函数的连续小波变换是一双变量的函数,变量比多一个,因此称连续小波变换是超完备的,因为它要求的存储量和它代表的信息量都显著增加了。对于变量超过一个的函数来说,这个变换的维数也将增加。若是一个二维函数,则它的连续小波变换是: (2.10)其中,表示在两个维度上的平移,二维连续小波逆变换为: (2.11)同样的方法可以推广到两个或两个以上的变量函数上。2.2.2 离散小波变换15 计算机中的图像信息是以离散信号形式存放的,所以需要将连续小波变换离散
40、化。而最基本的离散化方法就是二进制离散,一般将这种经过离散化的小波及其变换叫做二进小波和二进变换。需要注意的是这里的离散化都是针对连续的尺度因子和连续平移因子的,而不是针对时间的。这儿限制尺度因子总是正数。(1)尺度与位移的离散化对连续小波基函数尺度因子和平移因子进行离散化可以得到离散小波变换,从而减少小波变换系数的冗余度。在离散化时通常对尺度因子和平移因子按幂级数进行离散化,即取(为整数,但一般都假定),得到离散小波函数为: (2.12)其对应系数为: (2.13)(2)二进制小波变换二进小波变换是一种特殊的离散小波变换,特别地令参数,则有。该二进尺度分解的原理在二十世纪三十年代由 Litt
41、lewood 和 Paley 在数学上进行了研究证明。离散小波变换为: (2.14)离散二进小波变换为: (2.15)二维离散小波变换:我们考虑二维尺度函数是可分离的情况,也就是: (2.16)设是与对应的一维小波函数,则有: (2.17) (2.18) (2.19)以上三式就建立了二维小波变换的基础。2.2.3 多分辨率分析与滤波器组Mallat在构造正交小波基时提出了多分辨率分析(Multi-Resolution Analysis)的概念,从空间概念上形象地说明了小波的多分辨率特性,并将在此之前的所有正交小波基的构造法统一起来,给出了正交小波的构造方法以及正交小波的快速算法Mallat算法
42、。Mallat算法在小波分析中的地位相当于快速傅立叶变换在经典傅立叶分析中的地位。小波变换是一种多分辨率分析的有利工具。多分辨率分析具有如下性质16:(1) 单调性,; (2.20)(2) 逼近性,; (2.21)(3) 伸缩性; (2.22)(4) 平移不变性; (2.23)(5) Riesz基存在函数,使得构成的Riesz基,即对任一,存在唯一的,使在均方收敛意义下成立 (2.24)且存在,使 (2.25)由以上可以看出,所有的闭子空间都是由同一尺度的函数伸缩后平移系列张成的的尺度空间,称为多分辨率分析的尺度函数。尺度函数的傅里叶变换具有低通滤波的特性,小波函数的傅里叶变换具有高通滤波特性。这样利用尺度函数和小波函数构造信号的低通滤波器和高通滤波器。则可以对信号进行不同尺度下的分解。多分辨率分析可形象地表示为一组嵌套的多分辨率子空间(如图2.2所示)。W1W2W3V3图2.2 嵌套的多分辨率子空间假设原信号的频率空间为,经第一级分解后被分解成两个子空间:低频的和高频的;经第二级分解后被分解成低频的和高频的。这种子空间的分解过程可以记为: (2.2