《一次函数与一元一次不等式-市级优质课PPT.ppt》由会员分享,可在线阅读,更多相关《一次函数与一元一次不等式-市级优质课PPT.ppt(33页珍藏版)》请在三一办公上搜索。
1、,3.2 一次函数与一元一次不等式,都昌中学,任何一个一元一次方程都可以转化为 的形式;所以解一元一次方程可以转化为:当一次函数的值为 时,求相应的 的值,kx+b=0,0,自变量,从图像上看:,这相当于已知直线y=kx+b,确定它与 的交点的 坐标,X轴,横,解一元一次方程可以利用一次函数的图像,复习,一次函数与一元一次方程,提出问题 创设情境,我们来看下面的问题,1.解不等式:5x+63x+10,这两个问题有什么关系?,2.当自变量x为何值时,函数y=2x-4值大于0?,问题1中,不等式可化为 2x-40,,解得 x2,问题2中,是要解不等式 2x-40,,得出 x2 时,,函数y=2x-
2、4值大于0.,1.是不是所有的一元一次不等式都可以转化为一次函数的相关问题呢?,2.它在函数图像上的表现是什么呢?,3.如何通过函数图像来求解一元一次不等式?,以上这些问题就是我们这一节将要学习的问题.,提出问题 创设情境,我们来看下面的问题,1.解不等式:5x+63x+10,这两个问题有什么关系?,2.当自变量x为何值时,函数y=2x-4值大于0?,导入新课,y=2x-4,可以看出当x2时,直线上的点全在x轴的上方。,即:x2时,y=2x-4 0,由此可知:通过函数图像可以求不等式的解集,同理:x 2时,y=2x-4 0,观察函数y=2x-4 的图像,“解方程ax+b=0(a,b为常数,a0
3、)”与“求自变量x为何值时,一次函数y=ax+b的值为0”有什么关系?,“解不等式ax+b0(a,b为常数,a0)”与“求自变量x为什么范围内,一次函数y=ax+b的值大于0”有什么关系?,(同一个问题),导入新课,(同一个问题),归纳,由于任何一元一次不等式都可以转化为ax+b 0或ax+b0(a,b为常数,a0)的形式,所以解一元一次不等式可以看作:当一次函数值大于或小于0时,求自变量相应的取值范围。,已知一次函数 y=2x+1,根据它的图象回答下列问题.(1)x 取什么值时,函数值 y 为1?(2)x 取什么值是,函数值 y 大于3?(3)x 取什么值时,函数值 y 小于3?,解:作出函
4、数 y=2x+1的图象,及直线y=3(如图),y=2x+1,y=3,从图中可知:,(1)当 x=1 时,函数值 y 为1。,(2)当x 1 时,函数值 y 大于3。,(3)当x 1 时,函数值 y 小于3。,例题,用画函数图象的方法解不等式:,不等式化为 3x-6 0,画出函数y=3x-6的图像,这时 y=3x-6 0,此不等式的解集为x 2,y=3x-6,5x+42x+10,解:,由图像可以看出:,当 x2 时这条直线上的点在x轴的下方,,例题,5x+42x+10,解法二:,把 5x+42x+10 看做两个一次函数y=5x+4和y=2x+10,画出y=5x+4和y=2x+10的图像.,10,
5、-5,y=2x+10,y=5x+4,2,它们的交点的横坐标为2.,当x2时直线y=5x+4 上的点都在直线y=2x+10的下方.,x 2,14,4,由图像可知,即5x+42x+10,此不等式的解集为,两种解不等式的方法都是把不等式转化为比较直线上点的位置的高低,从数的角度看:,从形的角度看:,1.当自变量x的取值满足什么条件时,,函数y=3x+8的值满足下列条件?,8,解:,(3)画直线 y=3x+8,由图象可知,y0 时对应的 x-8/3,当x-8/3时,y 0,y=3x+8,(4)y2,(3)y 0,P126,1.当自变量x的取值满足什么条件时,,函数y=3x+8的值满足下列条件?,-2,
6、2,8,解:,(4)画直线 y=3x+8,由图象可知,y2 时对应的 x-2,当x-2时,y2,y=3x+8,(4)y2,(3)y 0,P126,1.当自变量x的取值满足什么条件时,,函数y=3x+8的值满足下列条件?,-2,6,解法二:,画直线 y=3x+6,,由图象可知,当x-2时,3x+6 0,y=3x+6,(4)要使y2,,即3x+8 2,变为3x+60,当x-2 时,y2,P126,(4)y2,(3)y 0,原方程化为 3x-6=0,画出函数y=3x-6的图像,此方程的解为 x=2,y=3x-6,解:,由图像可以看出:,当 x=2 时,y=0.,2.利用函数图象解出x:,(1)5x-
7、1=2x+5,即 x=2 时,3x-6=0.,P126,不等式化为 3x-6 0,画出函数y=3x-6的图像,这时 y=3x-6 0,此不等式的解集为x 2,y=3x-6,解:,由图像可以看出:,当 x2 时这条直线上的点在x轴的下方,,2.利用函数图象解出x:,(2)6x-43x+2,P126,解法二:,把 6x-43x+2 看做两个一次函数y=6x-4和y=3x+2,画出y=6x-4 和y=3x+2的图像.,y=3x+2,y=6x-4,2,它们的交点的横坐标为2.,当x2时直线y=6x-4上的点都在直线y=3x+2的下方.,8,由图像可知,即6x-43x+2,此不等式的解集为x2,2.利用
8、函数图象解出x:,(2)6x-43x+2,P126,8.从A地向B地打长途电话,通话3分钟以内收费2.4元,3分钟后每增加通话时间1分钟加收一元。通话半小时需要多少费用?,活动与探究,习题14.3,P129:8,当0 x3时,y=2.4.,当x3时,y 2.4+(x-3)x-0.6.,解:设通话时间为x分钟,通话收费为y元,当x30时,y x-0.6 30-0.629.4.,归纳,施展才华,1、直线y=x+3与x轴的交点坐标为,所以相应的方程x+3=0的解是.,2、设m,n为常数且m0,直线y=mx+n(如图所示),则方程mx+n=0的解是.,x=3,(3,0),x=2,求当自变量x取值范围为
9、什么时,函数y=3/2 x+6的值满足以下条件?(1)y=0;(2)y0;(3)y0;(4)y2.2.利用图像解不等式:(1)5x-1 2x+5(2)x-4 3x+1,P129,习题14.3:3,4题.,活动探究,9.A,B两个商场平时以同样的价格出售同样的产品,在中秋节期间让利酬宾。A商场所有商品8折销售,B商场消费超过200元后,可以在这家商场7折购物。试问如何选择商场购物更经济?,P129,习题14.3:9题.,1、作出函数y=-2x-5的图象,观察图象回答下列 问题:x取什么值时,-2x-5=0?x取什么值时,-2x-50?x取什么值时,-2x-50?x取什么值时,-2x-53,2.根
10、据下列一次函数的图象,你能求出哪些不等式的解集?并直接写出相应不等式的解集.,1、某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x 千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知(如图1-5-2),当x_时,选用个体车较合算,2、当自变量 x 的取值满足什么条件时,函数 y=3x+8 的值满足下列条件?y=0(2)y=-7(3)y 0(4)y 2 3、用图象法解方程(1)5x-1=2x+5,4.若y1=x+3,y2=3x+4,当x取何值时,y1y2?,5.兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑.已知弟弟每秒跑3m,哥哥每秒跑4m
11、.列出函数关系式,作出函数图象,观察图象回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20m?谁先跑过100m?,回顾思考:,1.以下两个问题是不是同一个问题?解不等式:2x40 当x为何值时,函数y=2x 4的值大于0?2.你如何利用图象来说明?3.“解不等式2x40”可以与怎样的一次函数问题是同一的?怎样在图象上加以说明?,通过这节课的学习,你有什么收获?,用一次函数图象来解一元一次不等式,一次函数、一元一次不等式之间的联系,求一元一次不等式的解,可以看成某一个一次函数当自变量取何值时,函数的值大于零或等于零。,作业,P129,习题14.3:3、4、7
12、题.,1.当自变量x的取值满足什么条件时,,函数y=3x+8的值满足下列条件?,(1)y=0,(2)y=-7,-5,-7,8,解:,(1)画直线 y=3x+8,由图象可知,y=0 时对应的 x=-8/3,当x=-8/3时,y=0,y=3x+8,P126,1.当自变量x的取值满足什么条件时,,函数y=3x+8的值满足下列条件?,(1)y=0,(2)y=-7,-5,-7,8,解:,(2)画直线 y=3x+8,由图象可知,y=-7 时对应的 x=-5,当x=-5时,y=-7,y=3x+8,P126,1.当自变量x的取值满足什么条件时,,函数y=3x+8的值满足下列条件?,-5,15,解法二:,画直线 y=3x+15,,由图象可知,当x=-5时,3x+15=0,y=3x+15,(2)要使y=-7,,即3x+8=-7,变为3x+15=0,当x=-5时,y=-7,P126,(1)y=0,(2)y=-7,