《圆的标准方程教学设计.doc》由会员分享,可在线阅读,更多相关《圆的标准方程教学设计.doc(4页珍藏版)》请在三一办公上搜索。
1、圆的标准方程教学设计上饶市余干中学 汤雨文一、教材分析学习了“曲线与方程”之后,作为一般曲线典型例子,安排了本节的“圆的方程”。圆是学生比较熟悉的曲线,在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究它的方程,它与其他图形的位置关系及其应用 同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其它圆锥曲线的方程奠定了基础 也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用。二、学情分析学生在初中的学习中已初步了解了圆的有关知识,本节将在上章学习了曲线与方程的基础上,学习在平面直角坐标系
2、中建立圆的代数方程,运用代数方法研究直线与圆,圆与圆的位置关系,了解空间直角坐标系,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力。三、教学目标 (一)知识与技能目标(1)会推导圆的标准方程。(2)能运用圆的标准方程正确地求出其圆心和半径。(3)掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程。(二)过程与方法目标(1)体会数形结合思想,初步形成代数方法处理几何问题能力。(2)能根据不同的条件,利用待定系数法求圆的标准方程。(三)情感与态度目标圆是基于初中的知识,同时又是初中的知识的加深,使学生懂得知识的连续性;圆在生活中很常见,通过圆的
3、标准方程,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育四、重点、难点、疑点及解决办法1、重点:圆的标准方程的推导过程和圆标准方程特征的理解与掌握。2、难点:圆的标准方程的应用。3、解决办法:充分利用课本提供的2个例题,通过例题的解决使学生初步熟悉圆的标准方程的用途和用法。五、教学过程首先通过课件展示生活中的圆,那么我们今天从另一个角度来研究圆。(一)复习提问在初中,大家学习了圆的概念,哪一位同学来回答?问题1:具有什么性质的点的轨迹称为圆?平面内与一定点距离等于定长的点的轨迹称为圆(教师在课件上画圆)问题2:图哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反
4、映了圆的什么特点? 圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小问题3:求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少?求曲线方程的一般步骤为:(1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M的坐标,简称建系设点;(如图)(2)写出适合条件P的点M的集合P=M|P(M)|,简称写点集;(3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程;(4)化方程f(x,y)=0为最简形式,简称化简方程;(5)证明化简后的方程就是所求曲线的方程,简称证明其中步骤(1)(3)(4)必不可少下面我们用求曲线方程的一般步骤来
5、建立圆的标准方程(二)建立圆的标准方程1建系设点由学生在黑板上板演,并问有无不同建立坐标系的方法教师指出:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导因为C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,y)2写点集根据定义,圆就是集合P=M|MC|=r3列方程由两点间的距离公式得:4化简方程将上式两边平方得:(x-a)2+(y-b)2=r2 (1)方程(1)就是圆心是C(a,b)、半径是r的圆的方程我们把它叫做圆的标准方程这时,请大家思考下面一个问题问题4:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?这是二元二次方程,展开后没有xy项,括
6、号内变数x,y的系数都是1点(a,b)、r分别表示圆心的坐标和圆的半径当圆心在原点即C(0,0)时,方程为 x2+y2=r2教师指出:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r0,圆的方程就给定了这就是说要确定圆的方程,必须具备三个独立的条件注意,确定a、b、r,可以根据条件,利用待定系数法来解决(三)圆的标准方程的应用学生练习一:1说出下列圆的圆心和半径:(学生回答)(1)(x-3)2+(y-2)2=5;(2)(2x+4)2+(2y4)2=8;(3)(x+2)2+ y2=m2 (m0)教师指出:已知圆的标准方程,要能够熟练地求出它的圆心和半径2、(
7、1)圆心是(3,3),半径是2的圆是_.(2)以(3,4)为圆心,且过点(0,0)的圆的方程为( ) A x2+y2= 25 B x2+y2= 5 C (x+3)2+(y+4)2= 25 D (x-3)2+(y-4)2= 25教师纠错,分别给出正确答案:2、 (1)(x-3)2+(y3)2=4;(2)D.指出:要求能够用圆心坐标、半径长熟练地写出圆的标准方程例1求满足下列条件各圆的方程:(1) 求以C(1,3)为圆心,并且和直线相切的圆的方程(2) 圆心在x轴上,半径为5且过点(2,3)的圆。解:(1)已知圆心坐标C(1,3),故只要求出圆的半径,就能写出圆的标准方程 因为圆C和直线相切,所以
8、半径就等于圆心C到这条直线的距离 根据点到直线的距离公式,得因此,所求的圆的方程是 (2)设圆心在x轴上半径为5的圆的方程为(x-a)2+y2=25点A(2,3)在圆上(2a)2+32=25a=-2或6所求圆的方程为(x2)2+y2=25或(x-6)2+y2=25这时,教师小结本题:求圆的方程的方法(1)定义法 (2) 待定系数法,确定a,b,r;学生练习二:1、 以C(3,-5)为圆心,且和直线3x-7y+2=0相切的圆的方程_.教师纠错,分别给出正确答案:(x3)2+(y+5)2=32。 例2已知圆的方程,求经过圆上一点的切线方程 解:如图,设切线的斜率为,半径OM的斜率为 因为圆的切线垂
9、直于过切点的半径,于是 (让学生注意斜率不存在时和为0的情况)经过点M的切线方程是 ,整理得 因为点在圆上,所以,所求切线方程是法二:勾股定理法三:向量变式一:已知圆的方程为x2+y2= 1,求过点(2,2)的切线方程。变式二:已知圆的方程为(x-1)2+(y+1)2=1 ,求过点(2,2)的切线方程。学生练习三:1.已知圆求:(1)过点A(4,-3)的切线方程是_.(2)过点B(-5,2)的切线方程是_教师纠错,分别给出正确答案:(1)4x-3y=25;(2)x=-5或21x-20y+145=0(四)本课小结1圆的方程的推导步骤;2圆的方程的特点:点(a,b)、r分别表示圆心坐标和圆的半径;3求圆的方程的两种方法:(1)待定系数法;(2)定义法4. 数型结合的数学思想5. 过定点求圆切线方程.(五)、布置作业 习题7.6 1,2,3(六)、板书设计7.6圆的标准方程一、 建立圆的标准方程1、 圆的方程的推导(x-a)2+(y-b)2=r22、 圆的标准方程的特点:圆心(a,b)定位,r定型二 圆的标准方程的应用例1例2学生练习4