第三章概率分布.ppt

上传人:sccc 文档编号:5016276 上传时间:2023-05-29 格式:PPT 页数:25 大小:475.02KB
返回 下载 相关 举报
第三章概率分布.ppt_第1页
第1页 / 共25页
第三章概率分布.ppt_第2页
第2页 / 共25页
第三章概率分布.ppt_第3页
第3页 / 共25页
第三章概率分布.ppt_第4页
第4页 / 共25页
第三章概率分布.ppt_第5页
第5页 / 共25页
点击查看更多>>
资源描述

《第三章概率分布.ppt》由会员分享,可在线阅读,更多相关《第三章概率分布.ppt(25页珍藏版)》请在三一办公上搜索。

1、第 三 章 概率分布,3.1离散型概率分布3.2连续型概率分布,3.1 离散型概率分布,3.1.1 随机变量3.1.2 离散型随机变量的概率分布3.1.3 离散型随机变量的数学期望和方差3.1.4 几种常用的离散型概率分布,随机变量(random variables),一次试验的结果的数值性描述一般用 X,Y,Z 来表示例如:投掷两枚硬币出现正面的数量根据取值情况的不同分为离散型随机变量和连续型随机变量,离散型随机变量(discrete random variables),随机变量 X 取有限个值或所有取值都可以逐个列举出来 x1,x2,以确定的概率取这些不同的值离散型随机变量的一些例子,连续

2、型随机变量(continuous random variables),可以取一个或多个区间中任何值 所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任意点连续型随机变量的一些例子,离散型随机变量的概率分布,列出离散型随机变量X的所有可能取值列出随机变量取这些值的概率通常用下面的表格来表示,P(X=xi)=pi称为离散型随机变量的概率函数pi0;,离散型随机变量的概率分布(例题分析),【例】投掷一颗骰子后出现的点数是一个离散型随机变量。写出掷一枚骰子出现点数的概率分布,概率分布,离散型随机变量的概率分布(例题分析),【例】一部电梯在一周内发生故障的次数X及相应的概率如下表,一部电梯一周发

3、生故障的次数及概率分布,(1)确定的值(2)求正好发生两次故障的概率(3)求故障次数不超过2次的概率(4)至少发生两次故障的概率,离散型随机变量的概率分布(例题分析),解:(1)由于0.10+0.25+0.35+=1 所以,=0.30(2)P(X=2)=0.35(3)P(X 2)=0.10+0.25+0.35=0.70(4)P(X2)=0.35+0.30=0.65,离散型随机变量的数学期望(expected value),离散型随机变量X的所有可能取值xi与其取相对应的概率pi乘积之和描述离散型随机变量取值的集中程度记为 或E(X)计算公式为,离散型随机变量的方差(variance),随机变量

4、X的每一个取值与期望值的离差平方和的数学期望,记为 2 或D(X)描述离散型随机变量取值的分散程度计算公式为方差的平方根称为标准差,记为 或D(X),离散型数学期望和方差(例题分析),【例】一家电脑配件供应商声称,他所提供的配件100个中拥有次品的个数及概率如下表,每100个配件中的次品数及概率分布,求该供应商次品数的数学期望和标准差,常用离散型概率分布,两点分布,一个离散型随机变量X只取0和1两个可能的值它们的概率分布为 或 也称0-1分布,两点分布(例题分析),【例】已知一批产品的次品率为p0.05,合格率为q=1-p=1-0.05=0.95。并指定废品用1表示,合格品用0表示。则任取一件

5、为废品或合格品这一离散型随机变量,其概率分布为,二项分布,二项分布与伯努利试验有关二项分布满足下列条件一次试验只有两个可能结果,即“成功”和“失败”“成功”是指我们感兴趣的某种特征一次试验“成功”的概率为p,失败的概率为q=1-p,且概率p对每次试验都是相同的 试验是相互独立的,并可以重复进行n次 在n次试验中,“成功”的次数对应一个离散型随机变量X,二项分布(Binomial distribution),重复进行 n 次试验,出现“成功”的次数的概率分布称为二项分布,记为XB(n,p)设X为 n 次重复试验中出现成功的次数,X 取 x 的概率为,二项分布,对于P(X=x)0,x=1,2,n,

6、有同样有当 n=1 时,二项分布化简为,二项分布(数学期望和方差),1、数学期望=E(X)=np2、方差 2=D(X)=npq,二项分布(例题分析),【例】已知一批产品的次品率为4%,从中任意有放回地抽 取5个。求5个产品中:(1)没有次品的概率是多少?(2)恰好有1个次品的概率是多少?(3)有3个以下次品的概率是多少?,泊松分布(Poisson distribution),1837年法国数学家泊松(D.Poisson,17811840)首次提出 用于描述在一指定时间范围内或在一定的长度、面积、体积之内每一事件出现次数的分布泊松分布的例子一定时间段内,某航空公司接到的订票电话数一定时间内,到车

7、站等候公共汽车的人数一匹布上发现的疵点个数一定页数的书刊上出现的错别字个数,泊松分布(概率分布函数),给定的时间间隔、长度、面积、体积内“成功”的平均数e=2.71828 x 给定的时间间隔、长度、面积、体积内“成功”的次数,泊松分布(数学期望和方差),数学期望 E(X)=方差 D(X)=,泊松分布(例题分析),【例】假定某航空公司预订票处平均每小时接到42次订票电话,那么10分钟内恰好接到6次电话的概率是多少?,解:设X=10分钟内航空公司预订票处接到的电话次数,作业,依据过去一年的统计资料显示某电话公司市内电话交换机于周日晚间8:008:05时段内转接电话的平均数为10通,今日又恰逢周日。1)若以X表示今天晚上8:008:05时段内交换机转接电话的通数,则X的概率函数为?2)以上时段内电话少于3通的概率(包括3通)?3)若以Y表示今晚8:008:01时间段内交换机转接电话的通数,则Y的概率函数为?4)以上的时间段,电话通数多于4通的概率为?,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号