《第十九章一次函数课题学习选择方案第1课时.ppt》由会员分享,可在线阅读,更多相关《第十九章一次函数课题学习选择方案第1课时.ppt(16页珍藏版)》请在三一办公上搜索。
1、第十九章 一次函数19.3 课题学习 选择方案(第1课时),湖北省咸宁市温泉中学 雷刚,八年级 下册,课题内容,学习建立一次函数模型解决问题的方法,并通过比较几个一次函数的变化率来解决方案选择问题。,学习目标,1会用一次函数知识解决方案选择问题,体会函数 模型思想;2能从不同的角度思考问题,优化解决问题的方法;3能进行解决问题过程的反思,总结解决问题的方 法,一、创设情境,提出问题,做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划,是非常必要的。应用数学的知识和方法对各种方案进行比较分析,可以帮助我们清楚地认识各种方案,作出合理的选择。,问题:你能说说生活中需要选择
2、方案的例子吗?,下表给出A,B,C 三种上宽带网的收费方式:选取哪种方式能节省上网费?问题1:“选择哪种方式上网”的依据是什么?,根据省钱原则选择方案,二、实例分析,规划思路,问题2:哪种方式上网费是会变化的?哪种不变?,追问1:方式C上网费是多少钱?,方案A,B的费用在超过一定时间后,随上网时间变化,是上网时间的函数方案C费用固定.,讨论1:方式A、B中,上网费由哪些部分组成的?,讨论2:影响方式A、B上网费用的因素是什么?,上网时间,讨论3:这三种方式中有一定最优惠的方式吗?,没有一定最优惠的方式,与上网的时间有关,问题3:你能用适当的方法表示出方式A的上网费用吗?,方式A:当上网时间不超
3、过25h时,上网费30元;当上网时间超过25h时,上网费30+超时费 即上网费30+0.0560(上网时间25),当0t25时,y30;,当t25时,y30+0.0560(t25)即y3t45,追问1:设上网时间为t h,上网费用为y元,你能用 数 学关系式表达y与t的关系吗?,问题4:类比方式A,你能用数学关系式表示出方式B 中上网费用y与上网时间t的关系吗?,问题5:方式C的上网费y3关于上网时间t之间的函数 关系式呢?,当t0时,y3=120.,方案A费用:,方案B费用:,方案C费用:,y3=120,t 0,请分别写出三种方案的上网费用y 元与上网时间t h之间的函数解析式,三、建立模型
4、,解决问题,问题7:你能在同一直角坐标系中画出它们的图象吗?,问题6:你能把上面的问题描述为函数问题吗?,(1)当y1y2时,即3t-45=40,解方程,得:(2)当y2y3时,即3t-100120,解方程,得:t,120,50,30,25,50,O,t,y,y1,y2,y3,当上网时间不超过31小时40分,选择方案A最省钱;当上网时间为31小时40分至73小时20分,选择方案B最省钱;当上网时间超过73小时20分,选择方案C最省钱,四、课堂小结,用一次函数解决实际问题的基本思路:(1)明确问题的目标;(2)发现问题中数量之间的关系;(3)找出问题中变量之间的函数关系;(4)函数问题的解的实际
5、意义.,x(小时),如图,l1、l2分别表示一种白炽灯和一种节能灯的费用y(费用灯的售价电费,单位:元)与照明时间x的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样。据图象解答下列问题:(1)分别求出 l1、l2的解析式;(2)当照明时间为多少时,两种灯 的费用相等?(3)某用户照明2500小时,他买了一 个白炽灯和一个节能灯,请你帮他设 计最省钱的用灯方法。,五、同步练习,L1(白),l2(节),x(小时),五、同步练习,L1(白),l2(节),解:(1)y1=0.03x2;(0 x2000)y2=0.012x20;(0 x2000)(2)当y1y2时,x1000(3)使用节能灯,海阔凭鱼跃,天高任鸟飞。,谢谢!,