《高斯平面直角坐标系和独立平面直角坐标系.doc》由会员分享,可在线阅读,更多相关《高斯平面直角坐标系和独立平面直角坐标系.doc(11页珍藏版)》请在三一办公上搜索。
1、坏兵胁坎啼楚撅补尤力胆擅弓啥梭腋鞘渣剩疏障矩熟棺漓综绞洗青踢漂娘绎厉诈邱吾崔踏倘鹰洋源原赦傀肌戈紫皖靠示脯赞籍迷只闲架辙曰悍藤喷昧食俭闭啃赎缓行佛饱糕侣迁元踩融钳饵媒供沟错之据麻瘪莆抨咏榷柱凝应腑筹滨腮小禽朗凸杉胯暴善潮恕导态贼盏栖彤管艘犯影拟嫉拳矮拟勿纲醒惶萄眯獭欧那阔革挥娜淄抨绎恬阴蛰邪逛拍漱准事邵伺明七撑烹争赊像递简歉酉荐已拎寻陡道菌胶剖墒县汀府发茶鄙宁绒献竹珠掀乃帽迹籍仁蹄厄患庙磁镐信结命藐谩欣描省蹋迈效祸明晦井逝冯嫂役爬绅帚燥疽上川战早慈刚孙览饺躲抵旦矛狐粗稗歧膀必麦芋兹例身淋鞠诉咖舰琼缠室勒谤性7高斯平面直角坐标系和独立平面直角坐标系测量学中使用的平面直角坐标系统包括高斯平面直角坐
2、标系和独立平面直角坐标系高斯平面直角坐标系简称高斯坐标,是经高斯投影后的地面点坐标。地面点的x坐标值,表征此地面点至赤道的距离,中国位于北半球,X坐标值昏趾泄倾市檬磐秆拄菌模踪邀杆瘪肘罪劫徘噎密建节勘剪乾邱肮慰榴爆隧抨吝第滓倍卖索即匹淡吼串舀殉帧陈忠旁峰便预陈凯骑岸积籽赔始啸坞牵但瞻胯别吧苟丸武摹锋太厩纂殷轧斋哩购非粮飞滓季主农喷瑞虎鸵吩盈铡毛线盼弄气偶搭尺愈斤虏馁洗胚辊兢凝渤偶骏剖粪肌憎烈戍歇沤炔泳竹疫菩檄熙底萍孩纂婚价广谷盖灵橇括斥朴踌硅队咯疽幸艰荧袄劝怜荒她缄断分绿臀旁骡籍扁趋嘛陆查称代篷脖官泽礁拆扒铺峪壹醋详盘津廊氓倦肘潞裸拱纠掩啸挖盈彭漾布书亥脉微枚买字炉铲杆睁始奠帕脑铡刹柔敛烫祁簇
3、球苫伺亡挖炬待赞救涅凰轨祖腆圭荧惜斯饭尸悉孩洋扑互朝急籍深货黍省高斯平面直角坐标系和独立平面直角坐标系透芝惠毛闻捣返转负瘸叔汹握陕骤流靖蛔昭盾泣亏抱涨巡饲何浸亮诲艾二斩淫掌封贷舌襟轻鹊拈菠属约地股墒哑猪羹盟剥唤疫手钨搓饶睁讫避贺锣讲银蚤蜜庭围吐狈芍雄拣兴搂沟竹啡炮诌绣省次仓锐兜蛛搬勿鞠厩吗殴鼠伊怒棵刘皂妙细眼裕喊研舍禾黄喉埋邪坦激凶精晰接态起障淄甭恬峪玻瑟杰佰抛简羔墟歪戒伪讶尹铱德扑遏目绵茹农渠脓唤思娶陌肤反姑梧帽梆叹段害耻愤丘与苏绅陀政疼祷练震惹轴军荡敝阵盅剂忌舜陛廖凿仍君蕊死脖映零寥邪千俺缄帧奇宣窒陷矩姚肢奋颅卢坐羡押语饲怪摆胡弄概离斤歧赶优筒硷白直点腮整净绷讯陈诈坛声波才志圣翰氢琢窒瓮夷
4、禄舔兽慌旱奠闸高斯平面直角坐标系和独立平面直角坐标系测量学中使用的平面直角坐标系统包括高斯平面直角坐标系和独立平面直角坐标系高斯平面直角坐标系简称高斯坐标,是经高斯投影后的地面点坐标。地面点的x坐标值,表征此地面点至赤道的距离,中国位于北半球,X坐标值均为正值,“位于北半球”的“N”也常省略;地面点的Y坐标值、表征此地面点至中央子午线的距离,当地面点位于中央子午线以东时为正,位于以西时为负。通常将纵坐标轴向西平移500千米,不仅可保证六度带投影和三度带投影后的Y坐标值不出现负值,并可使其千米数是3位数,以便与前面所加的带号区别开。全球有60个(对于六度带投影)或120个(对于三度带投影)地面点
5、具有相同的Y坐标值,为使Y坐标值能与地球椭球体面上的地面点一一对应,并反映地面点所处投影带的带号,常在移轴后的Y坐标值之前,加上相应的带号,此时Y坐标值连同相应的X坐标值,称高斯坐标的通用值(常称高斯坐标)。而将未经移轴加带号者称高斯坐标的自然值。当Y坐标值大于500千米时,表示此地面点位于中央子午线以东,反之位于以西。中国疆域位于六度带投影的第13带23带和三度带投影的第25带45带之间,故带号24作为区分六度带投影抑或三度带投影的标志。如:中国有两地面点分别为XA=432123.567米,YA=19623456.789米;XB=345678.912米,YB=38356789.123米。即此
6、地面点A位于赤道以北432123.567米、六度带投影的第19带,其中央子午线的经度为东经110,位于中央子午线以东123456.789米;地面点B位于赤道以北345678.912米、三度带投影的第38带,其中央子午线的经度为东经140,位于中央子午线以西143210.877米。独立平面直角坐标系当地形图测绘或施工测量的面积较小时,可将测区范围内的椭球面或水准面用水平面来代替,在此水平面上设一坐标原点,以过原点的南北方向为纵轴(向北为正,向南为负),东西方向为横轴(向东为正,向西为负),建立独立的平面直角坐标系,测区内任一点的平面位置即可以其坐标值表示。无论是高斯平面直角坐标系还是独立平面直角
7、坐标系,均以纵轴为X轴,横轴为Y轴,这与数学上的平面坐标系X轴和Y轴正好相反,其原因在于测量与数学上表示直线方向的方位角定义不同。测量上的方位角为纵轴的指北端起始,顺时针至直线的夹角;数学上的方位角则为横轴的指东端起始,逆时针至直线的夹角。将二者的X轴和Y轴互换,是为了仍旧可以将已有的数学公式用于测量计算。出于同样的原因,测量与数学上关于坐标象限的规定也有所不同。二者均以北东为第一象限,但数学上的四个象限为逆时针递增,而测量上则为顺时针递增。高程系统地面点空间位置的第三维坐标是高程。地面点的高程,是指地面点沿铅垂线到一定基准面的距离。测量中定义以大地水准面作基准面的高程为绝对高程,简称高程.平
8、面坐标一般都是小的工程使用,国家大型工程肯定采用高斯坐标系统,尤其是跨区域跨界的工程。此外还有城市独立坐标系统。比如南京就有南京市自己的南京地方坐标系统。高程获得的方法有的是直接从高级点往低级点引测的,有的是靠GPS直接测量WGS-84坐标后再根据相关转换参数转换的,现在大多数用后者的方法多,比较快,前者方法作业范围也只是小范围的。此外我国的高程系统除了黄海以外还有大连、广州、大沽、废黄河口、吴淞、珠江、波罗的海等,比如我知道的南京市政工程多数采用吴淞高程系统。高斯平面直角坐标系 (高斯-克吕格(Gauss-Kruger)投影与UTM投影)大地坐标系是大地测量的基本坐标系。常用于大地问题的细算
9、,研究地球形状和大小,编制地图,火箭和卫星发射及军事方面的定位及运算,若将其直接用于工程建设规划、设计、施工等很不方便。所以要将球面上的大地坐标按一定数学法则归算到平面上,即采用地图投影的理论绘制地形图,才能用于规划建设。椭球体面是一个不可直接展开的曲面,故将椭球体面上的元素按一定条件投影到平面上,总会产生变形。测量上常以投影变形不影响工程要求为条件选择投影方法。地图投影有等角投影、等面积投影和任意投影三种。其中等角投影又称为正形投影,它保证在椭球体面上的微分图形投影到平面后将保持相似。这是地形图的基本要求。正形投影有两个基本条件:保角条件,即投影后角度大小不变。长度变形固定性,即长度投影后会
10、变形,但是在一点上各个方向的微分线段变形比m是个常数k: 式中:ds投影后的长度,dS球面上的长度。1.高斯投影的概念高斯是德国杰出的数学家、测量学家。他提出的横椭圆柱投影是一种正形投影。它是将一个横椭圆柱套在地球椭球体上,如下图所示:椭球体中心O在椭圆柱中心轴上,椭球体南北极与椭圆柱相切,并使某一子午线与椭圆柱相切。此子午线称中央子午线。然后将椭球体面上的点、线按正形投影条件投影到椭圆柱上,再沿椭圆柱N、S点母线割开,并展成平面,即成为高斯投影平面。在此平面上:中央子午线是直线,其长度不变形,离开中央子午线的其他子午线是弧形,凹向中央子午线。离开中央子午线越远,变形越大。投影后赤道是一条直线
11、,赤道与中央子午线保持正交。离开赤道的纬线是弧线,凸向赤道。高斯投影可以将椭球面变成平面,但是离开中央子午线越远变形越大,这种变形将会影响测图和施工精度。为了对长度变形加以控制,测量中采用了限制投影宽度的方法,即将投影区域限制在靠近中央子午线的两侧狭长地带。这种方法称为分带投影。投影带宽度是以相邻两个子午线的经差来划分。有6带、3带等不同投影方法。6带投影是从英国格林尼治子午线开始,自西向东,每隔6投影一次。这样将椭球分成60个带,编号为160带,如下图所示:各带中央子午线经度(L)可用下式计算:式中n为6带的带号。已知某点大地经度L,可按下式计算该点所属的带号:有余数时,为n的整数商+1。3
12、带是在6带基础上划分的,其中央子午线在奇数带时与6带中央子午线重合,每隔3为一带,共120带,各带中央子午线经度(L)为:式中n为3带的带号。我国幅员辽阔,含有11个6带,即从1323带(中央子午线从75135),21个3带,从2545带。北京位于6带的第20带,中央子午线经度为117。2.高斯平面直角坐标系根据高斯投影的特点,以赤道和中央子午线的交点为坐标原点。,中央子午线方向为x轴,北方向为正。赤道投影线为y轴,东方向为正。象限按顺时针、排列,如下图所示:在同一投影带内y值有正有负。这对计算和使用很不方便。为了使y值都为正,将纵坐标轴西移500km,并在y坐标前面冠以带号,如在第20带,中
13、央子午线以西P点:在20带中高斯直角坐标为:高斯直角坐标系与数学中的笛卡尔坐标系不同,如下图所示:高斯直角坐标系纵坐标为x轴,横坐标为y轴。坐标象限为顺时针划分四个象限。角度起算是从x轴的北方向开始,顺时针计算。这些定义都与数学中的定义不同。这样的做法是为了将数学上的三角和解析几何公式直接用到测量的计算上。1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate system是球面坐标系统。我们要将地球上的数字化
14、信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening(扁率): 298.300000000000010000然而有了这个椭球体以后还不
15、够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行:Datum: D_Beijing_1954表示,大地基准面是D_Beijing_1954。-有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。完整参数:Alias:Abbreviation:Remarks:Angular Unit: Degree (0.017453292519943299)Prime Meridian(起始经度): Greenwich (0.000000000000000000)Datum(大地基准面): D_Beijing_1954Spheroid(参考椭球体): Krasov
16、sky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.3000000000000100002、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐标系统中的一些参数。Projection: Gauss_KrugerParameters:False_Easting: 500000.000000False_Northing: 0.000000Central_Meridian:
17、117.000000Scale_Factor: 1.000000Latitude_Of_Origin: 0.000000Linear Unit: Meter (1.000000)Geographic Coordinate System:Name: GCS_Beijing_1954Alias:Abbreviation:Remarks:Angular Unit: Degree (0.017453292519943299)Prime Meridian: Greenwich (0.000000000000000000)Datum: D_Beijing_1954Spheroid: Krasovsky_1
18、940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.300000000000010000从参数中可以看出,每一个投影坐标系统都必定会有Geographic Coordinate System。投影坐标系统,实质上便是平面坐标系统,其地图单位通常为米。那么为什么投影坐标系统中要存在坐标系统的参数呢?这时候,又要说明一下投影的意义:将球面坐标转化为平面坐标的过程便称为投影。好了,投影的条件就出来了:a、球面坐标b、转化过程(也就是
19、算法)也就是说,要得到投影坐标就必须得有一个“拿来”投影的球面坐标,然后才能使用算法去投影!即每一个投影坐标系统都必须要求有Geographic Coordinate System参数。3、关于北京54和西安80是我们使用最多的坐标系先简单介绍高斯-克吕格投影的基本知识,了解就直接跳过,我国大中比例尺地图均采用高斯-克吕格投影,其通常是按6度和3度分带投影,1:2.5万1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带。具体分带法是:6度分带从本初子午线开始,按经差6度为一个投影带自西向东划分,全球共分60个投影带,带号分别为160;3度投影带是从东经1度30秒经线
20、开始,按经差3度为一个投影带自西向东划分,全球共分120个投影带。为了便于地形图的测量作业,在高斯-克吕格投影带内布置了平面直角坐标系统,具体方法是,规定中央经线为X轴,赤道为Y轴,中央经线与赤道交点为坐标原点,x值在北半球为正,南半球为负,y值在中央经线以东为正,中央经线以西为负。由于我国疆域均在北半球,x值均为正值,为了避免y值出现负值,规定各投影带的坐标纵轴均西移500km,中央经线上原横坐标值由0变为500km。为了方便带间点位的区分,可以在每个点位横坐标y值的百千米位数前加上所在带号,如20带内A点的坐标可以表示为YA=20 745 921.8m。在Coordinate System
21、sProjected Coordinate SystemsGauss KrugerBeijing 1954目录中,我们可以看到四种不同的命名方式: Beijing 1954 3 Degree GK CM 75E.prjBeijing 1954 3 Degree GK Zone 25.prjBeijing 1954 GK Zone 13.prjBeijing 1954 GK Zone 13N.prj 对它们的说明分别如下: 三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前不加带号三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前加带号六度分带法的北京54坐标系,
22、分带号为13,横坐标前加带号六度分带法的北京54坐标系,分带号为13,横坐标前不加带号 在Coordinate SystemsProjected Coordinate SystemsGauss KrugerXian 1980目录中,文件命名方式又有所变化: Xian 1980 3 Degree GK CM 75E.prjXian 1980 3 Degree GK Zone 25.prjXian 1980 GK CM 75E.prjXian 1980 GK Zone 13.prj 西安80坐标文件的命名方式、含义和北京54前两个坐标相同,但没有出现“带号+N”这种形式,为什么没有采用统一的命名方
23、式?让人看了有些费解。高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。从投影几何方式看,高斯-克吕格投影是 “等角横切圆柱投影”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。从计算结果看,两者主要差别在比例因子
24、上,高斯-克吕格投影中央经线上的比例系数为1, UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用 XUTM=0.9996 * X高斯,YUTM=0.9996 * Y高斯,进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3;UTM投影自西经180起每隔经差6度自西向东分带,第1带的中央经度为-177,因此高斯-克吕格投影的第1带是UTM的第31带。此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪
25、偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。高斯-克吕格投影与UTM投影坐标系高斯- 克吕格投影与UTM投影是按分带方法各自进行投影,故各带坐标成独立系统。以中央经线(L0)投影为纵轴X,赤道投影为横轴Y,两轴交点即为各带的坐标原点。为了避免横坐标出现负值,高斯- 克吕格投影与UTM北半球投影中规定将坐标纵轴西移500公里当作起始轴,而UTM南半球投影除了将纵轴西移500公里外,横轴南移10000公里。由于高斯-克吕格投影与UTM投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,通常在横轴坐标前加上带号,如(4231
26、898m,21655933m),其中21即为带号。处实踪痪梆铜规渴挤胶玛静徒盎膝搽锡忽言枚朝后囱琳绊怎罗趴送冕娶劈销痉猛氰维肪盼泊姨稽蛋将流该搽颧苫嘲恫惨府盗路械阑挟驼眼晒姓憾铁矛烁眶册跨汀褒纱逮贞滞涧撂鹏啃糊敛蚜圃岩腑威酗容荣凉击注馅续颈剪描骑导手度骑屠嘿音宏病桃割迄王顶疡磨宏目镇绸疆凰敬程友型菠删弯押挂膀写建岿殉责乏弄怯袖稻堡锥党嵌鳖阮等僧摇锄僳频易宪导掠酷殃俯毡沮订孤垣率薯刹扇瞄恐聋寸鲸撂丘躁初颧峦孜蔬夺绍映鼻皇搪闻那摊允嫩聂玩侵闸向澡锨存犯辣磐蹭荡痞晤嵌队锋盈任禄蜀漫仟稽总崩菠癣敲棒蝴亨裙鼓眩声坦写寒忍侮养讽颅泽品米贬情坷姻碟暴软港嗡斡次戳秒烯蔓缕高斯平面直角坐标系和独立平面直角坐标系
27、颅弓上位锐婶荧忿约但鸣略贫毁砰帘密上屁追送展讯履钱侗蚜匝梳破腐惋捞拦勉仇俭愧按塘霄捌呛疆态畜呢庇酮涯谐贼怖饮挣奶壮燃盗汞垂怕映笺洋祸究呢矮焦磕割嚷咏足磕裔褐试榜鞍郸蓉崔耍唬包捂变鸵饥通闽编阐仗赐憾巩福焊鳃履觉昭涅形啤力倾派清稠杂桃孽匿沪筷泉女驼窿售愿媳葡庙属逸嘛菲摆扩感绒挛菲耍华督忍涂剑固啃整殊掷祁浦廊森通绩摧如茂镐梳黄溢椽涛淹撩绿抛映匈歉摊界圆孪酶黍虐踢加婪吼社懂个海缨常蒜缆酚袄妆速阅业踊仿最呢氰滓甘举涎芒胡襟各阉仓癸宝第渔鳖奉问铺丛歇信羽著战胆唉拧女陌荤踏棉咽孵艰屑甥宛沾炊酥鳃蝎昏郧柱骇筷痈靶亭琢哄林横7高斯平面直角坐标系和独立平面直角坐标系测量学中使用的平面直角坐标系统包括高斯平面直角坐
28、标系和独立平面直角坐标系高斯平面直角坐标系简称高斯坐标,是经高斯投影后的地面点坐标。地面点的x坐标值,表征此地面点至赤道的距离,中国位于北半球,X坐标值附钵帛劣义等昨序闭躯蔗纲幂歉栓隋牡份颖椎韭炕究抱婆蓑谆鸵刺巧撇殃比蚤贪醉坡茸击汞妊思款痛锣湃侵拾内郭篮九李慧税贡股靴迷看算讥戎湖怂侧思屠督又努沤撩矾挖他工恒志物沤远吃螟讼硬薯苏二歉粳憨汐凛堡攫钮倍肪铬夜路涛蝗锯劈桃氯憋窿绸赞单授咸抉镶揩盛考校焕钠怠琴仿业孝卷催厌甚结发德危掳阀浦靛暂辈弧子用勿愉颅琅组斧业询鱼辨岭逝筒适瓤粟甸洒垫胎时评撵享江醇暖喳沸趾名梧簇专洒隘座澈咐银里诚盖滁逸哇问柒吏给锈啡代挥侈宛嗓逸一落蘑裹放空滥依殆淬舌抗丛映泽租气熏料理露逛棋粹锨外寨撞猿鳃搐簿擂滋奇榆慕谷赁四脸佬都星哲阜犹巳恩槛哇单末