《循环水中氯离子去除方法 过量石灰.docx》由会员分享,可在线阅读,更多相关《循环水中氯离子去除方法 过量石灰.docx(8页珍藏版)》请在三一办公上搜索。
1、循环冷却水中氯离子去除方法 过量石灰-铝技术(UHLA)摘要:在循环冷却水中,氯离子是一种有害的成分,一方面氯离子易引发腐 蚀,另一方面大多数的缓蚀阻垢剂对水中氯离子浓度都有限值。氯离子可通过沉 淀方式去除:Ca4Al2Cl2(H)12,由此本文开展平衡实验和动力学实验评估UHLA 技术对氯离子的去除能力和反应条件。平衡实验共进行48组,其中NaCl溶液 为30mM,Ca(OH)2为0200mM,偏铝酸钠为0100mM。实验结果表明UHLA 可通过形成氯铝酸钙固体去除,同时这一过程可以通过一个反应动力学表达式证 实。实验结果也表明Ca4Al2Cl2(H)12的溶度积为10-94.75。1、前言
2、2000年,美国工业废水排放量约为120亿吨,接近80%的废水来源于电力 产业。工业废水主要来源于冷却水,主要污染包括了高温、有毒化学物质、有机 和无机污染物等,同时冷却水也是美国水资源的重要消费者。为了污染物减排、节水和节约开支,必须提高水冷却水的循环倍数。但循环 倍数的提高必然导致难挥发物质的浓缩,进而引发腐蚀、结垢以及生物黏泥等问 题。为了减少这些问题的产生,需要去除冷却水中某些物质,包括Ca2+、Mg2+、 磷、硅酸盐、硫酸盐和氯离子。氯离子是其中一种难挥发且易导致腐蚀的物质,同时氯离子也会影响缓蚀阻 垢剂的使用效果,一些研究表明在高氯浓度下,药剂的使用量也会增加。石灰软化在冷却水中应
3、用去除Caz+和Mg2+,降低硬度和碱度,同时也可部 分去处硅酸盐,但这和Mg2+含量有关。石灰软化在去除硫酸盐和氯离子方面无 效果。UHL是一种改进型的石灰软化方法,可以去除Ca2+、Mg2+、PO43-、CO32-. 硅酸盐等。UHLA去除硅酸盐是通过高含量的石灰投加提高水体pH并形成硅酸 钙沉淀。UHL的流程如图1所示,该流程分两步进行,第一步投加过量的Ca(OH)2 使水中钙离子提高同时pH达到1112,硅酸盐、Mg2+、PO43-在这一阶段得到去 除;第二步通过加入CO2或Na2CO3去除多余的Ca2+,同时调节pH到适宜值。 该技术可应用于制水,也可应用于旁滤系统。此外该工艺也可以
4、根据补给水特点 进行改进,如图2所示,旁滤水通过UHL处理,同时软化处理补给水。UHL的优势有很多,包括去除绝大多数的成垢离子和盐、去除重金属等。图2改进型UHL流程图2、UHLA工艺介绍石灰软化和UHL工艺虽然能够去处绝大多数的成垢物质,但在处理硫酸盐和氯离子方面效果甚微。虽然反渗透、离子交换、电渗析等技术能够达到这一目 的但成本要高很多。此外,硫酸盐和氯离子问题在其他领域也存在,如膜污染、 制盐结垢等,因而前处理去除迫切需要解决。Table 1-Unil costs of water treatment (You et al.T 1999).TreatmentLimeReverseIonm
5、ethodsoftenerosmosisexchangerUnit price (J/hni3)0.26-0.321,13-1450.97-2.26UHLA是一种改进型技术,该技术在去除硫酸盐和氯离子方面具有优势,其 中去除硫酸盐的研究在1985年即被研究,在高pH和高Ca2+含量情况下(图2 的第一步),形成Ca6Al2(SO4)3(OH)12沉淀,当Ca2+充分时硫酸根和铝的摩尔比 率是1.5:5.0,符合理论的化学计量。该沉淀的溶度积很低(10-109.9),同时该反 应属快速反应。此外,该反应也会通过协同沉淀和吸附去除硅酸盐。该方法也可 去除氯离子,形成弗雷德尔盐。Table 2Con
6、centration ranges covered in calculating ion activity* product of &a.lcium chlQroaluminate.Calciurri Alurrinum ChlorideCorrponerit pH (mM) (mM) (mM)Range 11 53-12.36 0 12-23 86 3 3035-3& 73 5 55-26.45Table 3Re&ults of regressions Of logfion activity prod uct) of calcium chlo real u min ate pre&i pit
7、atian.VariableSlopeCoefficient of 如terfflimatEn 产)Number 酎 data points (r?J1顷 C*)a. 0740 19430lag(Alr)3.36933iog(cij-Wl30pH3.016D.1B630目前针对液相中Ca4Al2Cl2(H)12的研究较为缺乏,更多的研究集中在混凝土 和水泥合成中。一些研究表明当在氯化钙溶液中投加氧化铝和氧化钙时,氯铝酸 钙结晶沉淀会迅速产生。该反应机理有数种解释,1974年,Ben-Yair提出该反 应是通过三钙盐(CaO)3Al2O3和CaCl2直接反应。1988年Yonezawa提出F盐的
8、 形成需要OH-参与Cl-和C3A的反应。1985年,Lambert提出去除水中的Cl-或者 的需要同时取出相同摩尔的阳离子或者加入相同摩尔的阴离子以保持水电中性; Ca(OH)2中电离OH-是阴离子的主要补充源。另一些研究提出了在NaCl存在的 情况下,F盐形成存在吸附和阴离子交换两种机理。在水泥间隙水中F盐的溶度 积很低,但在液相水处理领域F盐的性状仍未研究。本文的目的是研究UHLA 去除Cl-的效果,同时研究其沉淀反应的平衡条件。3、试验方法静态实验是在盛有 NaCl溶液浓度为30mM密封塑料容器中投加固体 Ca(OH)2和NaAlO2,室温(2325C )振荡2天,为防止CO2进入,该
9、实验容器 放置在装有CO2吸附剂的密封箱中。样品取出后通过0.45nm的滤膜过滤,Ca2+ 通过原子吸收分析,Cl-通过色谱法,Al3+通过分光光度法,。过滤前利用标准玻 璃电极测pH (10.00和12.45缓冲液标定)。动力学实验把40mM的Ca(OH)2, 20mM的NaAlO2放入30mM NaCl中,固定间隔时间取样分析,方法和静态实验 相同。4、结果与讨论静态沉淀实验:图3是不同铝和钙含量情况下Cl-的去除率。假设Cl-的去除 主要为F盐的形成,实验对各点F盐的离子活度积(IAP)进行了计算,覆盖了 表2给出的范围。IAP计算方程如下:4Ca2+2Al3+2Cl-=CaAl2Cl2
10、 (OH) 12(1)IAP=Ca2+4Al3+2Cl-2OHi2(2)利用MINTEQA2 (稀溶液化学平衡模型)戴维斯方程计算离子活度,取临 界状态离子活度计算溶度积,pH则为固定值。(实际计算认为各种水体是一种理 想溶液,各离子之间无相互作用,而实际上各种天然水体是一种真实溶液,水中 各种离子总是存在相互作用的,作用的结果使得化学反应相对减缓,在反应中起 作用的离子小于实际的离子总数。并且随着离子总浓度的增加,自由离子活度减 小。SARP的计算中,各离子含量用浓度表示,忽略了由于离子对或络合离子的 形成而使自由离子活度减小的因素.因此在计算水体的SAR值时,应考虑水体中 离子活度。对活度
11、系数的计算,选用适用于总溶解固体(TDS)高的咸水戴维斯方程9:)az.41计算结果表明,F盐的溶度积为10-94.75,结果分析表明,线性回归方程中 log(IAP),log(CaT),log(AlT),log(ClT),(pH)的数据可以证实沉淀物为 F 盐 Ca4Al2Cl2(OH)12。现行回归方程的相关系数R2和斜率很低,表明该化学式可信 度很高。图3显示高含量的铝会导致Cl浓度的升高,这可能是因为在Ca2+不足情况 下,形成Al-Cl-OH复合物。图4为溶液中Ca2+,Al3+关系图,当初始Ca2+很低 的情况下,稍高含量的Al3+较为适合,当Al含量进一步升高,溶液中Cl-含量也
12、 会增大,预示着Al-Cl-OH复合物的形成,最佳的Ca: Al=2.5(见图5),接近化 学计量比2.0。Flgune 3Effect af snriium alurninnte dose and lime dost nn chloride rtmovoL30 lime dose = 10 mM lime dose = 30 mMA lime 0。部=60 mNlime dose = 90 mMX lime dose = 120 mM |睥如淄=15。mM+ lime dose = 200 m Mn 5 W 15202530354045Alurninum concentration (mM)
13、Figure 4Rtlstionship between soluble cnlcium concentraition and soluble aluminurri concentration.30 i一Xime etc鸵=10mM Hme dose = 30 mM Ame dsc = 60 mM Alime dose =如 mM Xiime dMt 120 mM lime dotia = 15D rtM lime dose - 200 mM121416182022Ratio nf lime d 20 mM slumfinLini de &b = 10 vnM - - Tlioorcttcal
14、5050Lime (niM.)Figure 6一EffMt &f alum In Li in 日日号点 and 自 on lhe molar rMi。of a.liLiminiim rsmoved lo chlridE r&inov&id.2 0 0 61W2/IWSPMQ甘IJPMQ一11=&J paJeTe习Enr3swCO=VLI -lJHJW201816 Limedosa 10 mM 口 Lirn#do- =30 mMA LimodOSQ =S0iiiM Llm# dOM = 90 mWXUmt dose l30mMLime dose =l50mMQLime da&e = 20Q mM
15、206aBo1 - TheoreticalSwJiimi Hlumhwte dose (niM)CKm/IW) F*#s目UJn=ulTllROJ J员SLVFigure 7Effect of Immilnum dos& and lime dos& cn th目 malar ratio olf caleiuim rerriov&d la chlcrid removed. ilumlnurn due- = 10 mM lumlHum ddse- 3Q mMX回wnlnum 如靠二网 mM jbuminurni das = W mM口al uminum dona k 如 mMO nlwnlnym
16、= 40 mMA Jjluminum 如早尊=他 mH TlwarctJelAlumliium d愤r 灿 Jimr dust rutiu (mM)Figure BEffect of rartio of aluminum dose to lime dose on die molar ratio of calcium removed ta aluminijnn remDwed.动力学:根据动力学实验,详见图9,第一次采样即发现该反应迅速完成并且很彻底,该结果显示在动力学上该反应没有阻碍因素。Figure GKinetics of chloride- removal.成本:固定成本上因为不需要新设
17、备,与传统的石灰软化工艺相同。运行成 本上,由于需要加入铝酸盐因而稍高,但产物也可作为铝源应用,可略微减少成 本。根据计算,该法比石灰法要高0.12$/m3,该数据是根据应用和表1中石灰 软化相同冷却水实验得出,NaAlO2是根据市场价格计算,用量根据Al: Cl=1.6 时,Cl基本上被去除得出。综合来讲成本约为0.380.44$/m3,该成本较表1其 他方法都低。5、结论根据静态和动力学实验,得出以下结论:(1) UHLA可去除导致水垢的物质,同时包括Cl-和 SO42-。(2) Cl的去除是因为形成F盐,溶度积为10-94.75。(3) 过量的Al导致Cl去除率不高,可能是因为形成Al-Cl-OH复合物, 合适的比例Ca/Al=2.5。(4) Ca/Al2寸,Ca未能全部进入F盐中,这可能是因为形成其他固体或 未完全溶解。(5) 该反应为快速反应。作者简介:德州农工大学,环境工程学部,教授。