高阶方程的降阶法和幂级数解法.ppt

上传人:sccc 文档编号:5373383 上传时间:2023-06-30 格式:PPT 页数:33 大小:1.05MB
返回 下载 相关 举报
高阶方程的降阶法和幂级数解法.ppt_第1页
第1页 / 共33页
高阶方程的降阶法和幂级数解法.ppt_第2页
第2页 / 共33页
高阶方程的降阶法和幂级数解法.ppt_第3页
第3页 / 共33页
高阶方程的降阶法和幂级数解法.ppt_第4页
第4页 / 共33页
高阶方程的降阶法和幂级数解法.ppt_第5页
第5页 / 共33页
点击查看更多>>
资源描述

《高阶方程的降阶法和幂级数解法.ppt》由会员分享,可在线阅读,更多相关《高阶方程的降阶法和幂级数解法.ppt(33页珍藏版)》请在三一办公上搜索。

1、4.3 高阶方程的降阶法 和幂级数解法,Step-down Order Method and Series Method,4.2 内容回顾,1,2,方程类型,基本解组或通解,常数变易法,特解,相加,比较系数法,拉普拉斯变换法,求解方法,本节内容/Contents/,1.几类可降阶高阶方程,2.幂级数解法(求特解),1)方程不显含未知函数 及,则方程可降为 阶的方程,即可降 阶,4.3.1 可降阶的方程的类型,n 阶方程的一般形式,4.3 Step-down Order Method and Series Method,方法,令,则,的通解,若可求得,逐次积分 次,可得原方程的通解。,4.3 S

2、tep-down Order Method and Series Method,特别,对于二阶方程,积分,可得原方程的通解,4.3 Step-down Order Method and Series Method,解 令,例1,求方程,的通解。,4.3 Step-down Order Method and Series Method,2)不显含自变量 的方程,可降低一阶,方法,令,4.3 Step-down Order Method and Series Method,假定,将,代入原方程,4.3 Step-down Order Method and Series Method,降低一阶,分离

3、变量,可得原方程的解。,4.3 Step-down Order Method and Series Method,例2 求解方程,或,解,令,4.3 Step-down Order Method and Series Method,4.3 Step-down Order Method and Series Method,则(4.2)的基本解组可以求得。,可降低 k 阶,即可得到 n-k 阶的齐次线性方程。,3)齐次线性方程,已知(4.2)的 k 个线性无关的特解,则(4.2),结论,特别地,如果已知(4.2)的 n-1 个线性无关的解,,4.3 Step-down Order Method a

4、nd Series Method,令,方法,设,是(4.2)的 k 个线性无关的解,4.3 Step-down Order Method and Series Method,令,n-1阶线性方程,可将 化为 阶线性方程,或,4.3 Step-down Order Method and Series Method,同理,对于 就知道了 个非零解,且其线性无关,,线性无关,,4.3 Step-down Order Method and Series Method,类似地,令,或,线性无关的解,,继续下去,得到一个 n-k 阶的线性齐次方程,若 k=n-1,则可得到阶线性齐次方程,则可求得通解。,4

5、.3 Step-down Order Method and Series Method,令,特别,对于二阶齐次线性方程,若知其一非零解,,则可求得通解。,4.3 Step-down Order Method and Series Method,4.3 Step-down Order Method and Series Method,基解组为,通解,P.113,4.3 Step-down Order Method and Series Method,例4 已知,是方程,的解,试求方程的通解。,解,4.3 Step-down Order Method and Series Method,4.3.2

6、 二阶线性方程的幂级数解法,(求特解),解,为方程的解,例5,的解。,求方程,的满足初始条件,设,4.3 Step-down Order Method and Series Method,4.3 Step-down Order Method and Series Method,4.3 Step-down Order Method and Series Method,设级数解为,由于,所以,例8,的解。,求方程,的满足初始条件,解,4.3 Step-down Order Method and Series Method,0次项系数,次项系数,1次项系数,4.3 Step-down Order M

7、ethod and Series Method,n 为偶数时,即 n=2 k,,由上述递推公式得,n 为奇数时,即 n=2 k+1,4.3 Step-down Order Method and Series Method,4.3 Step-down Order Method and Series Method,例7 求初值问题,解,1次项系数,次项系数,设,对任给,级数发散,因此不存在幂级数形式之解。,4.3 Step-down Order Method and Series Method,存在性:P157158 定理10,定理11,4.3 Step-down Order Method and Series Method,练习:,1)求解方程,2)用幂级数方法,求方程满足条件的特解,3)若方程,有一特解为,则方程系数满足什么关系,其中 连续。,若方程有形式为 的解,则 m 满足什么关系.,4.3 Step-down Order Method and Series Method,思考:,1)求解方程,2)若两方程,有一个公共解,试求出此解,并分别求出这两个方程的通解。,作业,P.165 第2,6题;P.166 第7题。,4.3 Step-down Order Method and Series Method,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号