《用切片法讨论牟合方盖.ppt》由会员分享,可在线阅读,更多相关《用切片法讨论牟合方盖.ppt(20页珍藏版)》请在三一办公上搜索。
1、牟合方盖 1,用切片法讨论牟合方盖,蜀南竹海,牟合方盖 2,牟合方盖就是两个半径相同的直交圆柱面所围成的立体。教材中一般是利用二重积分计算其体积。本课件用截面的面积的定积分来计算其体积。还用数学软件Maple制作了有关动画。最后比较牟合方盖与另一个立体的体积。,牟合方盖 3,求两直交圆柱面,所围成的立体的体积,牟合方盖 4,牟合方盖,牟合方盖 5,with(plots):R:=1:x_axis:=plot3d(u,0,0,u=0.1.5,v=0.0.01,thickness=3):y_axis:=plot3d(0,u,0,u=0.1.3,v=0.0.01,thickness=3):z_axis
2、:=plot3d(0,0,u,u=0.1.3,v=0.0.01,thickness=3):zuobiaoxi:=display(x_axis,y_axis,z_axis):zhumian1:=plot3d(R*cos(t),R*sin(t),z,z=0.R*sin(t),t=0.Pi/2,color=yellow):quxian1:=spacecurve(R*cos(t),R*sin(t),R*sin(t),t=0.Pi/2,color=red,thickness=5):quxian2:=spacecurve(R*cos(t),R*sin(t),0,t=0.Pi/2,color=blue,th
3、ickness=5):zhumian2:=plot3d(R*cos(t),y,R*sin(t),y=0.R*sin(t),t=0.Pi/2,color=green):display(zhumian1,zhumian2,zuobiaoxi,quxian1,quxian2,scaling=constrained,orientation=28,53);,牟合方盖 6,牟合方盖,刘徽在他的九章算术注中,提出一个独特的方法来计算球体的体积:他不直接求球体的体积,而是先计算另一个叫牟合方盖的立体的体积。所谓牟合方盖,就是指由两个同样大小但轴心互相垂直的圆柱体相交而成的立体。由于这立体的外形似两把上下对称的
4、正方形雨伞,所以就称它为牟合方盖。在这个立体里面,可以内切一个半径和原本圆柱体一样大小的球体,刘徽并指出,由于内切圆的面积和外切正方形的面积之比为:4,所以牟合方盖的体积与球体体积之比亦应为:4。可惜的是,刘徽并没有求出牟合方盖的体积,所以亦不知道球体体积的计算公式。,http:/,牟合方盖 7,下面用截面来研究牟合方盖,牟合方盖 8,牟合方盖 9,从 x 轴正向看去,牟合方盖 10,with(plots):R:=1:f:=x-sqrt(R2-x2):a:=-R:b:=R:xzou:=spacecurve(x,0,0,x=a-1.b+1,thickness=3,color=black):yzo
5、u:=spacecurve(0,y,0,y=a-1.b+1,thickness=3,color=black):zzou:=spacecurve(0,0,z,z=a-1.b+1,thickness=3,color=black):K:=60:for i from 0 to K do xi:=a+i*(b-a)/K:zhengfangxingi:=spacecurve(xi,f(xi),f(xi),xi,-f(xi),f(xi),xi,-f(xi),-f(xi),xi,f(xi),-f(xi),xi,f(xi),f(xi),thickness=3,color=blue):zhengfangbani:
6、=plot3d(xi,y,z,y=-f(xi).f(xi),z=-f(xi).f(xi),color=grey,style=patchnogrid):qumian1i:=plot3d(x,y,f(x),x=a.xi,y=-f(x).f(x),color=green):qumian2i:=plot3d(x,y,-f(x),x=a.xi,y=-f(x).f(x),color=green):qumian3i:=plot3d(x,f(x),z,x=a.xi,z=-f(x).f(x),color=yellow):qumian4i:=plot3d(x,-f(x),z,x=a.xi,z=-f(x).f(x)
7、,color=yellow)od:zhengfangxing:=display(seq(zhengfangxingi,i=0.K),insequence=true):zhengfangban:=display(seq(zhengfangbani,i=0.K),insequence=true):qumian1:=display(seq(qumian1i,i=0.K),insequence=true):qumian2:=display(seq(qumian2i,i=0.K),insequence=true):qumian3:=display(seq(qumian3i,i=0.K),insequen
8、ce=true):qumian4:=display(seq(qumian4i,i=0.K),insequence=true):display(xzou,yzou,zzou,zhengfangban,zhengfangxing,qumian1,qumian2,qumian3,qumian4,scaling=constrained);,动画的Maple程序,牟合方盖 11,with(plots):R:=1:f:=x-sqrt(R2-x2):a:=-R:b:=R:xzou:=spacecurve(x,0,0,x=a-1/2.b+1/2,thickness=3,color=black):yzou:=s
9、pacecurve(0,y,0,y=a-1/2.b+1/2,thickness=3,color=black):zzou:=spacecurve(0,0,z,z=a-1/2.b+1/2,thickness=3,color=black):yuan1:=spacecurve(R*cos(t),R*sin(t),0,t=0.2*Pi,thickness=3,color=red):yuan2:=spacecurve(R*cos(t),0,R*sin(t),t=0.2*Pi,thickness=3,color=red):xi:=1*R:zhengfangxing:=spacecurve(xi,f(xi),
10、f(xi),xi,-f(xi),f(xi),xi,-f(xi),-f(xi),xi,f(xi),-f(xi),xi,f(xi),f(xi),thickness=3,color=blue):zhengfangban:=plot3d(xi,y,z,y=-f(xi).f(xi),z=-f(xi).f(xi),color=grey,style=patchnogrid):qumian1:=plot3d(x,y,f(x),x=a.xi,y=-f(x).f(x),color=green):qumian2:=plot3d(x,y,-f(x),x=a.xi,y=-f(x).f(x),color=green):q
11、umian3:=plot3d(x,f(x),z,x=a.xi,z=-f(x).f(x),color=yellow):qumian4:=plot3d(x,-f(x),z,x=a.xi,z=-f(x).f(x),color=yellow):display(xzou,yzou,zzou,yuan1,yuan2,zhengfangban,zhengfangxing,qumian1,qumian2,qumian3,qumian4,scaling=constrained,orientation=60,73);,牟合方盖 12,牟合方盖 13,with(plots):R:=1:f:=x-sqrt(R2-x2
12、):a:=-R:b:=R:xzou:=spacecurve(x,0,0,x=a-1.b+1,thickness=3,color=black):yzou:=spacecurve(0,y,0,y=a-1.b+1,thickness=3,color=black):zzou:=spacecurve(0,0,z,z=a-1.b+1,thickness=3,color=black):zhumian1:=plot3d(R*cos(t),R*sin(t),z,t=0.2*Pi,z=a-1.b+1,style=wireframe,color=blue):zhumian2:=plot3d(R*cos(t),y,R
13、*sin(t),t=0.2*Pi,y=a-1.b+1,style=wireframe,color=brown):K:=60:for i from 0 to K do xi:=a+i*(b-a)/K:zhengfangxingi:=spacecurve(xi,f(xi),f(xi),xi,-f(xi),f(xi),xi,-f(xi),-f(xi),xi,f(xi),-f(xi),xi,f(xi),f(xi),thickness=3,color=blue):zhengfangbani:=plot3d(xi,y,z,y=-f(xi).f(xi),z=-f(xi).f(xi),color=grey,s
14、tyle=patchnogrid):qumian1i:=plot3d(x,y,f(x),x=a.xi,y=-f(x).f(x),color=green,style=patchnogrid):qumian2i:=plot3d(x,y,-f(x),x=a.xi,y=-f(x).f(x),color=green,style=patchnogrid):qumian3i:=plot3d(x,f(x),z,x=a.xi,z=-f(x).f(x),color=yellow,style=patchnogrid):qumian4i:=plot3d(x,-f(x),z,x=a.xi,z=-f(x).f(x),co
15、lor=yellow,style=patchnogrid)od:zhengfangxing:=display(seq(zhengfangxingi,i=0.K),insequence=true):zhengfangban:=display(seq(zhengfangbani,i=0.K),insequence=true):qumian1:=display(seq(qumian1i,i=0.K),insequence=true):qumian2:=display(seq(qumian2i,i=0.K),insequence=true):qumian3:=display(seq(qumian3i,
16、i=0.K),insequence=true):qumian4:=display(seq(qumian4i,i=0.K),insequence=true):display(xzou,yzou,zzou,zhumian1,zhumian2,zhengfangban,zhengfangxing,qumian1,qumian2,qumian3,qumian4,scaling=constrained);,动画的Maple程序,牟合方盖 14,下面来求牟合方盖的体积,牟合方盖 15,这与用二重积分计算的结果相同见同济高等数学六版,下册 143页,例4,垂直于x轴的截面是一个正方形:,牟合方盖 16,牟合
17、方盖的体积与下面这个立体的体积相等,牟合方盖 17,牟合方盖 18,with(plots):R:=1.6:f:=x-sqrt(R2-x2):g:=x-sqrt(R2-x2):a:=-R:b:=R:xzou:=spacecurve(x,0,0,x=a-1.b+1,thickness=3,color=black):yzou:=spacecurve(0,y,0,y=a-1.b+1,thickness=3,color=black):base:=plot3d(x,y,0,x=a.b,y=g(x).f(x),color=grey,style=patchnogrid):quxian:=spacecurve(
18、R*cos(t),R*sin(t),0,t=0.2*Pi,thickness=3,color=red):K:=60:for i from 0 to K do xi:=a+i*(b-a)/K:zhengfangxingi:=spacecurve(xi,g(xi),0,xi,f(xi),0,xi,f(xi),f(xi)-g(xi),xi,g(xi),f(xi)-g(xi),xi,g(xi),0,thickness=3,color=blue):zhengfangbani:=plot3d(xi,y,z,y=g(xi).f(xi),z=0.f(xi)-g(xi),color=yellow,style=p
19、atchnogrid):qumian1i:=plot3d(x,f(x),(f(x)-g(x)*t,t=0.1,x=a.xi,color=green):qumian2i:=plot3d(x,g(x),(f(x)-g(x)*t,t=0.1,x=a.xi,color=green):qumian3i:=plot3d(x,g(x)+(f(x)-g(x)*t,f(x)-g(x),t=0.1,x=a.xi,color=grey)od:zhengfangxing:=display(seq(zhengfangxingi,i=0.K),insequence=true):zhengfangban:=display(
20、seq(zhengfangbani,i=0.K),insequence=true):qumian1:=display(seq(qumian1i,i=0.K),insequence=true):qumian2:=display(seq(qumian2i,i=0.K),insequence=true):qumian3:=display(seq(qumian3i,i=0.K),insequence=true):display(xzou,yzou,base,quxian,zhengfangban,zhengfangxing,qumian1,qumian2,qumian3,scaling=constrained,orientation=-60,70);,动画的Maple程序,牟合方盖 19,这个体积刚好等于牟合方盖的体积,现在来求这个立体的体积,牟合方盖 20,