《路模电子教案》PPT课件.ppt

上传人:小飞机 文档编号:5650107 上传时间:2023-08-05 格式:PPT 页数:43 大小:299.99KB
返回 下载 相关 举报
《路模电子教案》PPT课件.ppt_第1页
第1页 / 共43页
《路模电子教案》PPT课件.ppt_第2页
第2页 / 共43页
《路模电子教案》PPT课件.ppt_第3页
第3页 / 共43页
《路模电子教案》PPT课件.ppt_第4页
第4页 / 共43页
《路模电子教案》PPT课件.ppt_第5页
第5页 / 共43页
点击查看更多>>
资源描述

《《路模电子教案》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《路模电子教案》PPT课件.ppt(43页珍藏版)》请在三一办公上搜索。

1、7.3功率放大电路,功率放大电路在多级放大电路中处于最后一级,又称输出级。其主要作用是输出足够大的功率去驱动负载,如扬声器、伺服电机、指示表头、记录器等。功率放大电路要求:输出电压和输出电流的幅度都比较大;效率高。因此,三极管工作在大电压、大电流状态,管子的损耗功率大,发热严重,必须选用大功率三极管,且要加装符合规定要求的散热装置。由于三极管处于大信号运用状态,不能采用微变等效电路分析法,一般采用图解分析法。,1.OCL互补对称功率放大电路 OCL互补对称功率放大电路全称为无输出电容的互补对称功率放大电路,简称为OCL电路,电路如图7.36所示。图7.36 OCL功率放大电路,7.3.1互补对

2、称功率放大电路,(1)静态分析 当ui=0时,因电路上下对称,静态发射极电位UE=0,负载电阻RL中无电流通过,u o=0。因三极管处于微导通状态,所以两管的IB0、IC0、UCE=UCC,基本无静态功耗。(2)动态分析 为便于分析,将图7.36简化为图7.37(a)所示的原理电路,且暂不考虑管子的饱和管压降UCES和b、e极间导通电压UBE。,(a)电路原理电路图(b)输入波形(c)输出波形 图7.37 简化OCL功率放大电路,在ui正半周,V2导通、V3截止,+UCC通过V2向RL供电,在RL上获得跟随ui的正半周信号电压uo,即(uou i);在ui负半周,V2截止,V3导通,-UCC通

3、过V3向RL供电,在RL上获得跟随ui的负半周信号电压uo。负载RL上输出如图7.37(c)所示。由上分析可知:输出电压uo虽未被放大,但 由于iL=ie=(1+)ib,具有电流放大作用,因此具有功率放大作用。,图7.38 OCL 电路图解分析波形图,从图中可知,uCE1=UCC-uo、uCE2=-UCC-uo,其中uo在任一个半周期内为导通三极管的uce,即uo=-uce=ui。通常要求功率放大电路工作在最大输出状态,输出电压幅值为uom(max)=UCC-UCESUCC,此时,截止管承受的最大电压为2UCC。当功率放大电路工作在非最大输出状态时,输出电压幅值为Uom=IomRL=Ucem=

4、Uim,其大小随输入信号幅度而变。这些参数间的关系是计算输出功率和管耗的重要依据。,(3)参数计算 最大输出功率Pom 最大的输出功率为:Pom=IomUom=当功率放大器工作在非最大输出状态时,输出功能率为:Po=IomUom=,直流电源供给的功率PU 在一个周期内电源向两个功放管提供的直流功率PU为:PU=当功率放大器工作在最大输出状态时,两个直流电源供给的总功率为:PUm=,效率=当功率放大电路工作在最大输出状态时,效率为:=78.5%实用中三极管UCES,UBE等是客观存在的,因此,功率放大电路实际效率约60%。,三极管管耗PV 直流电源供给的功率与输出功率的差值,即为两只三极管上的管

5、耗,所以每只管子的管耗为 PV=(PU Po)功率放大电路工作在最大输出状态时的管耗,并不是最大管耗,每只三极管的最大管耗约为0.2Pom。,例8 在图7.36所示电路中,UCC1=UCC2=UCC=24V;RL=8,试求:10 当输入信号Ui=12V(有效值)时,电路的输出功率、管耗、直流电源供给的功率及效率。20 输入信号增大至使管子在基本不失真情况下输出最大功率时,互补对称电路的输出功率、管耗、电源供给的功率及效率。30 晶体管的极限参数。,解:10 在Ui=12V有效值时的幅值为:Uim=Ui17V,即UomUi=17V。故Po=18.1WPU=32.5WPV=PU Po=32.5 1

6、8.1=14.4W=55.7%,20 在最大输出功率时,最大输出电压为24V。Pom=36W PUm=45.8W PV=PU Po=45.8-36=9.8W(此时两管的功耗并不是最大功耗)=78.5%,30 晶体管的极限参数 PCM0.2Pom=0.236=7.2W(每一管)U(BR)CEO2UCC=224=48V ICM=3A,(4)交越失真 交越失真的波形如图7.39所示。图7.39 交越失真波形 解决交越失真的办法是为三极管V2、V3提一个合适的静态工作点,使三极管处于微导通状态,如图7.36中的V4、V5。,2OTL互补对称功率放大电路 OTL互补对称功率放大电路全称为无输出变压器的功

7、率放大电路,简称为OTL电路,如图7.40所示。图 7.40 OTL功率放大电路,(1)各元件作用 V1为功放管提供推动电压;RP1、RB1、R B2为V1提供静态工作点,同时还可使UK=1/2UCC;V2 V3、V4V5为两只复合三极管,分别等效为NPN和PNP 型。V6、V7、RP2为V2V3、V4V5提供合适的静态工作点,调节RP2可以改变静态工作点;Co为输出耦合电容,一方面将放大后的交流信号耦合给负载RL,另一方面作为V4、V5导通时的直流电源,因此要求容量大,稳定性高。C1、R1为自举电路。,(2)工作原理 ui为负半周时,V1集电极信号为正半周,V2、V3导通,V4、V5截止。在

8、信号电流流向负载RL形成正半周输出的同时向Co充电,使UCo=1/2UCC。ui正半周时,V1集电极信号为负半周,V2、V3截止,V4、V5导通。此时,Co上的1/2UCC与V4、V5形成放电回路,若时间常数RLC远大于输入信号的半周期,则电容上电压基本不变,而流过管子和负载的电流仍由基极控制,这样在负载上获得负半周输出信号,于是负载上获得完整的正弦信号输出。,(3)参数计算 OTL 电路与OCL电路相比,每个功放管实际工作电源电压为1/2UCC,因此将(7.37)(7.43)中UCC用1/2UCC替换即得相应的参数计算公式。例9在图7.41所示电路中,已知:RB1=22k、RB2=47k、R

9、E1=24、RE2=RE3=0.5、R1=240、RP=470、RL=8,V2为3DD01A、V3为3CD10A,V4、V5为2CP。试求:10 最大输出功率 20 若负载RL上的电流为iL=0.8sint(A)时的输出功率和输出电压幅值。,图7.41 例9的电路图,解:10 最大输出功率 Pom=9W 20 输出功率 Po=2.56W 输出电压幅值 U om=0.8 8=6.4V,7.3.2集成功率放大器,1.音频集成功率放大器(1)SL 4112 SL 4112的外形及管脚如图7.42所示。该集成功放有14只引脚,内部设有静噪抑制电路,因而接通电源时爆破噪声很小。它具有电源电压范围宽,降压

10、特性良好等优点,适用于各种收录机。主要参数为:电源9V、输出功率2.3W、输入阻抗20k、电压增益68dB、谐波失真2%。,图7.42 SL 4112引脚图 图 7.43 SL 4112应用电路,(2)TDA 2030 TDA 2030的外形及引脚如图7.44(a)所示。该集成功放只有5只引脚,它接线简单,既可以接成OCL电路,又可以接成OTL电路,广泛应用于音响设备中。其内部设有短路保护电路,具有过热保护能力。主要参数为:电源618V、输出功率9W、输入阻抗5M、电压增益30dB、谐波失真0.2%。TDA 2030的典型应用电路如图7.44(b)所示。,(a)(b)图 7.44 TDA 20

11、30 应用电路,2.双音频集成功率放大器(1)BTL电路 BTL功率放大器,其主要特点是在同样电源电压和负载电阻条件下,它可得到比OCL或OTL电路大几倍的输出功率,其工作原理图如图7.45所示。图 7.45 BTL原理电路,静态时,电桥平衡,负载RL中无直流电流。动态时,桥臂对管轮流导通。在ui正半周,上正下负,V1、V4导通,V2、V3截止,流过负载RL的电流如图中实线所示;在ui负半周,上负下止,V1、V4截止,V2、V3导通,流过负载RL的电流如图中虚线所示。忽略饱和压降,则两个半周合成,在负载上可得到幅度为UCC的输出信号电压。,(2)LM378 LM378的外形及管脚如图7.46所

12、示。主要参数为:电源1035V、输出功率4W/信道、输入电阻3k、电压增益34dB、带宽50kHz。图7.46 LM378引脚图,反相立体声放大器 反相立体声放大电路如图7.47所示。图7.47 简单反相立体声放大器,桥式结构单放大器桥式结构单放大电路如图7.48所示。图7.48 BTL电路,(3)TDA 1519 TDA 1519的外形及管脚如图7.49所示。内部设有多种保护电路(负载开路、AC及DC对地短路等),并有静噪控制及电源等待状态等功能。它在双声道工作时只要外接4只元件,BTL工作时只要外接1只元件,无需调整就能满意地工作。主要参数为:电源618V、输出功率5.5W(单声道,RL=

13、4)22W(BTL,RL=4)、电压增益40dB(立体声)46dB(BTL)、谐波失真10%。TDA1519典型应用电路如图7.50所示。,图7.49 TDA1519引脚图,(a)立体声电路(b)BTL电路 图7.50 TDA1519典型应用,3.场输出集成功率放大器 场输出集成功率放大器是用于显示器、电视机场扫描电路的专用功率放大器,内部采用泵电源型OTL电路形式,封装一般为单列直插式。(1)泵电源电路 图7.51所示为IX0640CE和外围元件组成的场输出电路。图中V4、V5、V6、V7及外接元件V8、C构成泵电源电路。,图51 IX0640CE组成的场输电路,在场输出锯齿波正程期内,电源

14、通过V8及V6对C充电,C两端电压很快充到UCC,极性为上正下负。在场输出锯齿波逆程期间,电源电压UCC与电容C上的电压串联供电,场输出级电源电压上升为2UCC,实现了泵电源供电,即在场扫描正程期间采用低电压供电,而在逆程期间采用高电压供电。(2)应用电路IX0640CE的外形及引脚如图7.52所示。图 7.52 IX0640CE引脚图,图7.53(b)为TDA8172的应用电路,场锯齿波信号经RP1、R2从P1脚进入集成功放,调节RP1可以改变场幅;RP2、C2组成微分电路,由于C2和C3的存在对锯齿波中的高频分量分流作用大,对低频分量分流作用小,因此它们构成预失真,以使场偏转线圈中锯齿波电

15、流线性良好;R3、R4构成直流反馈,可稳定工作点,C3用来滤除反馈信号中的交流成分;R5、R6为交流电流负反馈,改善锯齿波电流线性;V1、C1同内部电路构成逆程泵电源,实现自举升压;放大后的锯齿波信号从P5脚输出,送场偏转线圈,C4是输出耦合电容。,IX0640CE的应用电路如图7.51所示。场锯齿波信号从P4进入集成功放后首先加在V1的基极,经过V1放大后推动V2、V3组成的互补推挽场输出电路,再从P2脚输出送场偏转线圈,实现功率放大。TDA8172的外形及引脚如图7.53(a)所示。图7.53(a)TDA8172引脚图,图7.53(b)TDA8172组成的场输出电路,本章小结一、放大电路中

16、“放大”的实质,是通过三极管(或场效应管)的作用进行能量转换,即将直流电源的能量转换为负载获得的能量。放大电路的组成原则是必须有电源,核心元件是三极管(或场效应管),要有合适的静态工作点,并保证放大电路在放大信号的整个周期,三极管(或场效应管)都工作在特性曲线的线性放大区。放大电路工作时,电路中各电压、电流值是直流量和交流量叠加的结果。电路分析由静态分析和动态分析两部分组成。静态分析借助直流通路,用估算法或图解法确定静态工作点。动态分析借助交流通路,用图解法或微变等效电路法确定电压放大倍数、输入电阻、输出电阻等动态性能指标。常用的稳定工作点电路有射极偏置电路(基极分压式偏置电路)、集基耦合电路

17、和温度补偿电路。,二、共集电极电路由于输入电阻高,输出电阻低,并具有电压跟随特性,广泛应用于输出级或隔离级。共基极电路由于频率特性好,常用于高频放大。阻容耦合多级放大电路,由于各级放大电路的静态工作点互不影响,调试方便,常被用来进一步提高放大倍数,但计算每级放大倍数时应考虑前、后级之间的相互影响。场效应管放大电路的分析方法和步骤与三极管放大电路类似,各种类型的放大电路与相应的三极管放大电路具有类似的特点,只是模拟电路中多用结型和耗尽型MOS管,而增强型MOS管则多用于数字电路。,三、OCL电路采用双电源供电。OTL电路采用单电源供电,但需要一个大容量输出耦合电容。电路中,两只功放管分别在正、负半周交替工作。当输入信号一定时,能使输出信号幅度Uom基本上等于电源电压UCC而又不失真的负载称为功放电路的最佳负载。此时功放电路输出最大功率,具有最高的转换效率,但两管的功耗不是最大。由于集成功放外接元件少,电路结构简单,应用越来越广泛,使用时应注意正确选择型号,识别各引脚的功能。当需要进一步提高输出功率时,可将两个OCL电路连接成BTL电路形式。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号