《生物医用高分子材料.ppt》由会员分享,可在线阅读,更多相关《生物医用高分子材料.ppt(50页珍藏版)》请在三一办公上搜索。
1、生物医用高分子材料,第一组 成员:李真英(参与讨论)杨帆(讲稿)张名西(收集资料)金怡泽(收集资料)阿依努尔阿布力米提(参与讨论)唐至佳(PPT制作),一、生物医用高分子材料(Biomedical materials),定义:指对生物体进行诊断、治疗和置换损坏组织、器官或增进其功能的材料。,分类:按材料来源分:(1)医用金属和合金。主要用于承力的骨、关节和牙等硬组织的修复和替换。(2)医用高分子生物材料。高分子化合物是构成人体绝大部分组织和器官的物质,医用高分子生物材料包括合成(如:聚酯、硅橡胶)和天然高分子(如:胶原、甲壳素)。(3)医用生物陶瓷。有惰性生物陶瓷和活性生物陶瓷(羟基磷灰石陶瓷
2、、可吸收磷酸三钙陶瓷等)(4)医用生物复合材料。如羟基磷灰石涂复钛合金,炭纤维或生物活性玻璃纤维增强聚乳酸等高分子材料。(5)生物衍生材料。这类材料是将活性的生物体组织,包括自体和异体组织,经处理改性而获得的无活性的生物材料。,按用途分:(1)手术治疗用高分子材料 缝合线,黏胶剂,止血剂,各种导管,引流管,一次性输血输液器材(2)药用及药物传递用高分子材料靶向性高分子载体(肝靶向性,肿瘤靶向性),高分子药物(干扰素,降胆敏),高分子控制释放载体(胶囊,水凝胶,脂质体)(3)人造器官或组织人造皮肤,血管,骨,关节,肠道,心脏,肾等。,按降解性能分:可生物降解材料-指聚合物在生物体内酶、酸碱性环境
3、下或微生物存在的情况下可以发生分子量下降、生成水和二氧化碳等对生物体或环境无毒害的小分子化合物的性能。不可生物降解材料(生物惰性材料)-一种生物材料在特殊应用中和宿主反应起作用的能力,要求植入材料和机体间的相互作用能够永久地被协调。在生物环境下自身不发生有害的物理(渗透、溶解或吸附)或者化学反应(对酸碱酶稳定)。,二、天然可降解高分子材料,胶原蛋白、纤维蛋白甲壳素、壳聚糖、淀粉、纤维素海藻酸钠衍生物可吸收缝线药物控释载体人工皮肤,(1)胶原,胶原是人体组织中最基本的蛋白质类物质,至今已经鉴别出13种胶原,其中 IIII、V和 XI 型胶原为成纤维胶原。I 型胶原在动物体内含量最多,已被广泛应用
4、于生物医用材料和生化试剂。,结构:,由各种物种和肌体组织制备的胶原差异很小。最基本的胶原结构为由三条分子量大约为1105的肽链组成的三股螺旋绳状结构,直径为11.5nm,长约300nm,每条肽链都具有左手螺旋二级结构。胶原分子的两端存在两个小的短链肽,称为端肽,不参与三股螺旋绳状结构。研究证明,端肽是免疫原性识别点,可通过酶解将其除去。除去端肽的胶原称为不全胶原,可用作生物医学材料。,制备来源:,牛和猪的肌腱、生皮、骨骼是生产胶原的主要原料。,生产:,医用胶原制备的主要目的是除去组织中的非胶原成分和抗原物质,获得高纯度的胶原肽、胶原纤维或胶原组织。胶原在应用时必须交联,以控制其物理性质和生物可
5、吸收性。同时也必须考虑所用交联方法的强度、稳定性、毒性、趋钙化以及抗酶降解性能等。,特点:,优点:胶原材料具有生物力学性能好,免疫原性低等优点,被制造成为各种生物医学材料,在医疗器械产品制造领域有着不可替代的优势和相当广泛的应用。缺点:要通过对实际生产过程的严格控制才能达到动物源性胶原的人用标准。,胶原可以用于制造心脏瓣膜、支架、血管修复材料、止血海绵、创伤辅料、明胶、化妆品、人工皮肤、手术缝合线、组织工程基质等。,应用:,人工心脏瓣膜,前景展望:,胶原材料应用范围极其广泛,优势明显。我国在对胶原类医疗器械产品的检验评价方面也日趋完善,如不久前又增添了对免疫原性检测的要求。但当前国内对胶原类生
6、物医用材料免疫原性的研究很少,并且对于此类产品的免疫原性尚无标准评价方法。这一点仍需要我们继续不断地摸索与探究。,参考文献:动物源性胶原的生产、应用及其免疫原性 杜晓丹,方玉,奚廷斐,郭婷婷,Du Xiao-dan,Fang Yu,Xi Ting-fei,Guo Ting-ting-中国组织工程研究与临床康复2008年23期,(2)甲壳质,甲壳质是1811年由法国学者布拉克诺(Braconno)发现,1823年由欧吉尔(Dier)从甲壳动物外壳中提取,并命名为CHITIN,译名为几丁质。,结构:,1分子量甲壳质的化学结构和植物纤维素非常相似。都是六碳糖的多聚体,分子量都在100万以上。分子量越
7、高吸附能力越强,适合工业、环保领域应用。低分子量容易被人体吸收。分子量为7000左右的几丁聚糖,大约含30个左右的葡萄糖胺残基。,纳米甲壳质,2脱乙酰基纯度 几丁质经过脱乙酰基成为几丁聚糖,而几丁聚糖的基本单位是葡萄糖胺。几丁质因为不溶于酸碱也不溶于水而不能被身体利用。脱乙酰基后可增加其溶解性因此可被身体吸收。几丁质脱乙酰基纯度越高其品质越好。,制备来源:,自然界中,甲壳质存在于低等植物菌类、藻类的细胞,甲壳动物虾、蟹、昆虫的外壳,高等植物的细胞壁等,其量不低于丰富的纤维素,是除纤维素以外的又一大类重要多糖。据估计自然界中,甲壳质每年生物合成的量多达1000亿吨。,生产:,首先用稀的氢氧化钠液
8、除去蛋白质,然后,用盐酸除去钙盐,剩下的就是几丁质。为了从这些几丁质中除去乙酰基,用长时间的高温,使之在浓的氢氧化钠中发生反应,就可制成含有氨基的甲壳质(几丁聚糖或壳糖胺)。因为几丁质不溶于酸碱,也不溶于水,很难被人体利用。经脱乙酰基成几丁聚糖后它能溶于稀酸和体液中,可被人体所利用。,(3)壳聚糖,壳聚糖为甲壳素的脱乙酰衍生物,由甲壳素在4050浓度的氢氧化钠水溶液中110120下水解24h得到。,壳聚糖在碱性条件下存在大量氢键,体系收缩,药物通透率低,表现为“关”;酸性条件下成盐,由于同种电荷的相互排斥,聚合物网络扩张,药物通透率高,表现为“开”,因此具有pH刺激响应性,可作为智能型药物控制
9、释放材料使用。,壳聚糖接枝丙烯酸在酸性条件下存在大量氢键,体系收缩,药物通透率低,表现为“关”;在碱性条件下成盐,离子性基团解离,由于同种电荷的相互排斥,聚合物网络扩张,药物通透率高,表现为“开”,因此具有pH刺激响应性,可作为智能型药物控制释放材料使用。,(4)甲壳素、壳聚糖及其衍生物在医药敷料中的应用,研究意义:,医用生物材料的基本要求是安全、有效,研究甲壳素、壳聚糖及其衍生物的使用安全性对该产品在临床的推广和应用具有重要意义。,1、治疗外伤、创伤,甲壳素、壳聚糖等产品生物相容性好,且具有止血、止痛、抑菌、促进肉芽组织和上皮组织的形成等作用,是外伤、创伤治疗的理想产品。参考实验:刘延敏10
10、等大鼠创伤愈合实验 胡丹13等甲壳胺人工皮肤膜治疗指端急性损伤,甲壳质缝线,2、治疗烧伤、烫伤,壳聚糖的线型分子链结构使其具有优良的成纤性,其纤维可作为可吸收医用手术缝合线、人造皮肤、止血材料、手术包扎材料等。壳聚糖与胶原、明胶、抗菌药物等复合,改善物理性能和功能特性,可应用于烧伤、烫伤病人的治疗。参考实验:李瑞欣15壳聚糖外、中、内三层急救烧伤敷料 姜广建19壳聚糖、明胶、甘油复合透明型连续性烧伤敷料,3、治疗溃疡,慢性皮肤溃疡,包括血管性溃疡、放射性溃疡及感染性溃疡等,临床治疗困难,是一种临床常见的疾病。中药选择选用紫草、当归、白芷、甘草等活血止痛、祛腐生肌类药物,并提取有效成分;珍珠经超
11、微粉碎后制成分子离子态溶液;壳聚糖经化学修饰后制成水溶液。采用微乳化技术与微胶囊技术,将以上成分配制成具有定量缓释功能的微胶囊药膜。该复合膜中药有效成分与壳聚糖结合在一起,既保持了壳聚糖本身生物活性,又使中药缓释吸收,而且具有喷涂方便、自然成膜、渗透性强、易于吸收、加快溃疡愈合等特点。参考实验:李令根21壳聚糖中药复合药膜治疗难治性溃疡,4、治疗褥疮,褥疮又名压迫性溃疡,是老龄人群的多发病和常见病,可分为外源性、原发性、内源性、继发性等类型。壳聚糖应用于褥疮的临床治疗取得了良好的效果。参考实验:蒋玉燕26壳聚糖流体膜黄冬梅27在传统中药四黄膏(含大黄、黄连、黄柏、黄芩)中加入甲壳质制成甲黄膜液
12、,应用:,甲壳素能为肌体组织中的溶菌酶所分解,已用于制造吸收型手术缝合线。其抗拉强度优于其他类型的手术缝合线。在兔体内试验观察,甲壳素手术缝合线4个月可以完全吸收。甲壳素还具有促进伤口愈合的功能,可用作伤口包扎材料。甲壳素膜用于覆盖外伤或新鲜烧伤的皮肤创伤面时,具有减轻疼痛和促进表皮形成的作用,因此是一种良好的人造皮肤材料。,甲壳质手术缝合线,伤口包扎材料护创膜,优势:,几丁聚糖具有很强的抗菌力,促进肉芽生长和皮肤再生的效能,可用于制造人工皮肤,或治疗烧伤、烫伤,加速外伤愈合。用几丁聚糖制成人工皮肤不会发生人体排斥反应带来的一系列问题。这种人工皮肤和身体亲和力强,可被人体吸收,可使皮肤愈合良好
13、。它还有促使细胞活化的作用,可大量产生胶原纤维,不会留下伤疤。,实例:,具有消炎、抑菌、止血、止痛、促进组织生长等功能。无刺激,无毒性,无过敏。具有优良的生物相容性和可降解性能,易被人体吸收。,三、生物医用高分子材料市场发展概况,全球生物医用材料市场,中国生物医用材料市场,我国生物医学材料的生物医学工程产业的市场增长率高达 28(全球市场增长率20%),居全球之首。我国人工关节 替换年增长率高达30,远高于美国的4。,775万肢残患者和每年新增的300万骨损伤患者-需要大量骨修复材料2000万心血管病患者-每年需要24万套人工心瓣膜肾衰患者-每年需要12万个肾透析器,目前用高分子材料制成的人工
14、器官中,比较成功的有人工血管、人工食道、人工尿道、人工心脏瓣膜、人工关节、人工骨、整形材料等,已取得重大研究成果。还需不断完善的有人工肾、人工心脏、人工肺、人工胰脏、人工眼球、人造血液等。还有一些功能较为复杂的器官,如人工肝脏、人工胃、人工子宫等,则正处于大力研究开发之中。,如:德国UHMWPE材料ISO5834-2ASTM F648可用为人工关节、人工骨骼植入人体能耗极低,人工关节,人工骨,高分子材料虽然不是万能的,不可能指望它解决一切医学问题,,合成出具有生物医学功能的理想医用高分子材料的前景是十分广阔的。,但通过分子设计的途径,,小结,仿生人也将比想象中更快地来到世上。,人体的所有部位和脏器都可用高分子材料来取代。,除了大脑之外,,有人预计,,在21世纪,医用高分子将进入一个全新的时代。,Thank you!,