模拟电子技术基础课件.ppt

上传人:sccc 文档编号:5888204 上传时间:2023-08-29 格式:PPT 页数:182 大小:10.69MB
返回 下载 相关 举报
模拟电子技术基础课件.ppt_第1页
第1页 / 共182页
模拟电子技术基础课件.ppt_第2页
第2页 / 共182页
模拟电子技术基础课件.ppt_第3页
第3页 / 共182页
模拟电子技术基础课件.ppt_第4页
第4页 / 共182页
模拟电子技术基础课件.ppt_第5页
第5页 / 共182页
点击查看更多>>
资源描述

《模拟电子技术基础课件.ppt》由会员分享,可在线阅读,更多相关《模拟电子技术基础课件.ppt(182页珍藏版)》请在三一办公上搜索。

1、,2.2 理想运算放大器,1.vo的饱和极限值等于运放的电源电压V和V,2.运放的开环电压增益很高 若(vPvN)0 则 vO=+Vom=V 若(vPvN)0 则 vO=Vom=V,3.若V vO V 则(vPvN)0,4.输入电阻ri的阻值很高 使 iP 0、iN 0,5.输出电阻很小,ro 0,图2.2.1 运放的简化电路模型,由运放引入负反馈而得到的虚短和虚断两个重要概念,是分析由运放组成的各种线性应用电路的利器,必须熟练掌握。,2.3.1 同相放大电路,(a)电路图(b)小信号电路模型图2.3.1 同相放大电路,1.基本电路,2.3.1 同相放大电路,5.电压跟随器,根据虚短和虚断有,

2、vovn vp vi,(可作为公式直接使用),2.3.2 反相放大电路,(a)电路图(b)由虚短引出虚地vn0 图2.3.5 反相放大电路,1.基本电路,2.几项技术指标的近似计算,(1)电压增益Av,根据虚短和虚断的概念有 vn vp 0,ii0,所以 i1i2,即,(可作为公式直接使用),2.3.2 反相放大电路,2.4.1 求差电路,从结构上看,它是反相输入和同相输入相结合的放大电路。,当,则,若继续有,则,根据虚短、虚断和N、P点的KCL得:,2.4.1 求差电路,从放大器角度看,时,,增益为,(该电路也称为差分电路或减法电路),2.4.3 求和电路,根据虚短、虚断和N点的KCL得:,

3、若,则有,(该电路也称为加法电路),2.4.4 积分电路和微分电路,1.积分电路,式中,负号表示vO与vI在相位上是相反的。,根据“虚短”,得,根据“虚断”,得,因此,电容器被充电,其充电电流为,设电容器C的初始电压为零,则,(积分运算),2.4.4 积分电路和微分电路,当vI为阶跃电压时,有,vO与 t 成线性关系,1.积分电路,2.4.4 积分电路和微分电路,2.微分电路,end,本征半导体、杂质半导体,自由电子、空穴,N型半导体、P型半导体,多数载流子、少数载流子,施主杂质(5价)、受主(3价)杂质,end,3.2.1 载流子的漂移与扩散,漂移运动:在电场作用引起的载流子的运动称为漂移运

4、动。,扩散运动:由载流子浓度差引起的载流子的运动称为扩散运动。,PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。,3.2.4 PN结的反向击穿,当PN结的反向电压增加到一定数值时,反向电流突然快速增加,此现象称为PN结的反向击穿。,热击穿不可逆,3.3.2 二极管的伏安特性,二极管的伏安特性曲线可用下式表示,锗二极管2AP15的V-I 特性,硅二极管2CP10的V-I 特性,3.3.3 二极管的主要参数,(1)最大整流电流IF,(2)反向击穿电压VBR和最大反向工作电压VRM,(3)反向电流

5、IR,(4)正向压降VF,end,3.4.2 二极管电路的简化模型分析方法,1.二极管V-I 特性的建模,将指数模型 分段线性化,得到二极管特性的等效模型。,3.4.2 二极管电路的简化模型分析方法,1.二极管V-I 特性的建模,3.5 特殊二极管,3.5.1 齐纳二极管(稳压二极管),1.符号及稳压特性,利用二极管反向击穿特性实现稳压。稳压二极管稳压时工作在反向电击穿状态。,(1)稳定电压VZ,(2)动态电阻rZ,在规定的稳压管反向工作电流IZ下,所对应的反向工作电压。,rZ=VZ/IZ,(3)最大耗散功率 PZM,(4)最大稳定工作电流 IZmax 和最小稳定工作电流 IZmin,(5)稳

6、定电压温度系数VZ,2.稳压二极管主要参数,3.5.1 齐纳二极管,3.稳压电路,正常稳压时 VO=VZ,3.5.1 齐纳二极管,半导体三极管的结构示意图如图所示。它有两种类型:NPN型和PNP型。,4.1.1 BJT的结构简介,(a)NPN型管结构示意图(b)PNP型管结构示意图(c)NPN管的电路符号(d)PNP管的电路符号,三极管的放大作用是在一定的外部条件控制下,通过载流子传输体现出来的。外部条件:发射结正偏 集电结反偏,4.1.2 放大状态下BJT的工作原理,1.内部载流子的传输过程,发射区:发射载流子集电区:收集载流子基区:传送和控制载流子(以NPN为例),由于三极管内有两种载流子

7、(自由电子和空穴)参与导电,故称为双极型三极管或BJT(Bipolar Junction Transistor)。,IC=ICN+ICBO,IE=IB+IC,放大状态下BJT中载流子的传输过程,2.电流分配关系,根据传输过程可知,IC=ICN+ICBO,通常 IC ICBO,IE=IB+IC,放大状态下BJT中载流子的传输过程,根据,IE=IB+IC,IC=ICN+ICBO,且令,2.电流分配关系,3.三极管的三种组态,共集电极接法,集电极作为公共电极,用CC表示。,共基极接法,基极作为公共电极,用CB表示;,共发射极接法,发射极作为公共电极,用CE表示;,BJT的三种组态,综上所述,三极管的

8、放大作用,主要是依靠它的发射极电流能够通过基区传输,然后到达集电极而实现的。实现这一传输过程的两个条件是:(1)内部条件:发射区杂质浓度远大于基区杂质浓度,且基区很薄。(2)外部条件:发射结正向偏置,集电结反向偏置。,4.1.3 BJT的V-I 特性曲线,iB=f(vBE)vCE=const,(2)当vCE1V时,vCB=vCE-vBE0,集电结已进入反偏状态,开始收 集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。,(1)当vCE=0V时,相当于发射结的正向伏安特性曲线。,1.输入特性曲线,(以共射极放大电路为例),共射极连接,饱和区:iC明显受vCE控制的区域,该区域内,一般

9、vCE0.7V(硅管)。此时,发射结正偏,集电结正偏或反偏电压很小。,iC=f(vCE)iB=const,2.输出特性曲线,输出特性曲线的三个区域:,截止区:iC接近零的区域,相当iB=0的曲线的下方。此时,vBE小于死区电压。,放大区:iC平行于vCE轴的区域,曲线基本平行等距。此时,发射结正偏,集电结反偏。,4.1.3 BJT的V-I 特性曲线,(1)共发射极直流电流放大系数=(ICICEO)/IBIC/IB vCE=const,1.电流放大系数,4.1.4 BJT的主要参数,与iC的关系曲线,(2)共发射极交流电流放大系数=IC/IBvCE=const,1.电流放大系数,(3)共基极直流

10、电流放大系数=(ICICBO)/IEIC/IE,(4)共基极交流电流放大系数=IC/IEvCB=const,当ICBO和ICEO很小时,、,可以不加区分。,4.1.4 BJT的主要参数,(1)集电极最大允许电流ICM,(2)集电极最大允许功率损耗PCM,PCM=ICVCE,3.极限参数,4.1.4 BJT的主要参数,3.极限参数,4.1.4 BJT的主要参数,(3)反向击穿电压,V(BR)CBO发射极开路时的集电结反 向击穿电压。,V(BR)EBO集电极开路时发射结的反 向击穿电压。,V(BR)CEO基极开路时集电极和发射 极间的击穿电压。,几个击穿电压有如下关系 V(BR)CBOV(BR)C

11、EOV(BR)EBO,4.2 共射极放大电路的工作原理,4.2.1 基本共射极放大电路的组成,基本共射极放大电路,4.2.2 基本共射极放大电路的工作原理,1.静态(直流工作状态),输入信号vi0时,放大电路的工作状态称为静态或直流工作状态。,直流通路,VCEQ=VCCICQRc,4.2.2 基本共射极放大电路的工作原理,2.动态,输入正弦信号vs后,电路将处在动态工作情况。此时,BJT各极电流及电压都将在静态值的基础上随输入信号作相应的变化。,交流通路,4.3.1 图解分析法,1.静态工作点的图解分析,采用该方法分析静态工作点,必须已知三极管的输入输出特性曲线。,共射极放大电路,4.3.1

12、图解分析法,1.静态工作点的图解分析,列输入回路方程,列输出回路方程(直流负载线)VCE=VCCiCRc,首先,画出直流通路,直流通路,在输出特性曲线上,作出直流负载线 VCE=VCCiCRc,与IBQ曲线的交点即为Q点,从而得到VCEQ 和ICQ。,在输入特性曲线上,作出直线,两线的交点即是Q点,得到IBQ。,根据vs的波形,在BJT的输入特性曲线图上画出vBE、iB 的波形,2.动态工作情况的图解分析,根据iB的变化范围在输出特性曲线图上画出iC和vCE 的波形,2.动态工作情况的图解分析,3.静态工作点对波形失真的影响,截止失真的波形,饱和失真的波形,3.静态工作点对波形失真的影响,1.

13、BJT的H参数及小信号模型,模型的简化,hre和hoe都很小,常忽略它们的影响。,BJT在共射连接时,其H参数的数量级一般为,4.3.2 小信号模型分析法,2.用H参数小信号模型分析基本共射极放大电路,(1)利用直流通路求Q点,共射极放大电路,一般硅管VBE=0.7V,锗管VBE=0.2V,已知。,2.用H参数小信号模型分析基本共射极放大电路,(2)画小信号等效电路,H参数小信号等效电路,2.用H参数小信号模型分析基本共射极放大电路,(3)求放大电路动态指标,根据,则电压增益为,(可作为公式),电压增益,H参数小信号等效电路,2.用H参数小信号模型分析基本共射极放大电路,(3)求放大电路动态指

14、标,输入电阻,输出电阻,4.4.2 射极偏置电路,(1)稳定工作点原理,目标:温度变化时,使IC维持恒定。,如果温度变化时,b点电位能基本不变,则可实现静态工作点的稳定。,T,IC,IE,VE、VB不变,VBE,IB,(反馈控制),1.基极分压式射极偏置电路,(a)原理电路(b)直流通路,b点电位基本不变的条件:,I1 IBQ,,此时,,VBQ与温度无关,VBQ VBEQ,Re取值越大,反馈控制作用越强,一般取 I1=(510)IBQ,VBQ=35V,1.基极分压式射极偏置电路,(1)稳定工作点原理,1.基极分压式射极偏置电路,(2)放大电路指标分析,静态工作点,电压增益,画小信号等效电路,(

15、2)放大电路指标分析,电压增益,输出回路:,输入回路:,电压增益:,画小信号等效电路,确定模型参数,已知,求rbe,增益,(2)放大电路指标分析,(可作为公式用),输入电阻,则输入电阻,放大电路的输入电阻不包含信号源的内阻,(2)放大电路指标分析,输出电阻,输出电阻,求输出电阻的等效电路,其中,(2)放大电路指标分析,4.5.1 共集电极放大电路,1.静态分析,共集电极电路结构如图示,该电路也称为射极输出器,得,直流通路,小信号等效电路,4.5.1 共集电极放大电路,2.动态分析,交流通路,4.5.1 共集电极放大电路,2.动态分析,电压增益,输出回路:,输入回路:,电压增益:,其中,一般,,

16、则电压增益接近于1,,电压跟随器,4.5.1 共集电极放大电路,2.动态分析,输入电阻,时,,输入电阻大,输出电阻,由电路列出方程,其中,则输出电阻,时,,输出电阻小,4.5.1 共集电极放大电路,2.动态分析,4.5.1 共集电极放大电路,4.5.2 共基极放大电路,1.静态工作点,直流通路与射极偏置电路相同,2.动态指标,电压增益,输出回路:,输入回路:,电压增益:,交流通路,小信号等效电路,输入电阻,输出电阻,2.动态指标,小信号等效电路,2.三种组态的比较,各种场效应管的符号和特性曲线,续表,5.1.1 N沟道增强型MOSFET,2.工作原理,(1)vGS对沟道的控制作用,当vGS0时

17、,无导电沟道,d、s间加电压时,也无电流产生。,当0vGS VT 时,产生电场,但未形成导电沟道(感生沟道),d、s间加电压后,没有电流产生。,当vGS VT 时,在电场作用下产生导电沟道,d、s间加电压后,将有电流产生。,vGS越大,导电沟道越厚,VT 称为开启电压,3.V-I 特性曲线及大信号特性方程,(1)输出特性及大信号特性方程,截止区当vGSVT时,导电沟道尚未形成,iD0,为截止工作状态。,5.1.1 N沟道增强型MOSFET,3.V-I 特性曲线及大信号特性方程,(1)输出特性及大信号特性方程,可变电阻区 vDS(vGSVT),由于vDS较小,可近似为,rdso是一个受vGS控制

18、的可变电阻,3.V-I 特性曲线及大信号特性方程,(1)输出特性及大信号特性方程,可变电阻区,n:反型层中电子迁移率Cox:栅极(与衬底间)氧化层单位面积电容,本征电导因子,其中,Kn为电导常数,单位:mA/V2,3.V-I 特性曲线及大信号特性方程,(1)输出特性及大信号特性方程,饱和区(恒流区又称放大区),vGS VT,且vDS(vGSVT),是vGS2VT时的iD,V-I 特性:,3.V-I 特性曲线及大信号特性方程,(2)转移特性,5.1.2 N沟道耗尽型MOSFET,2.V-I 特性曲线及大信号特性方程,5.1.5 MOSFET的主要参数,一、直流参数,NMOS增强型,1.开启电压V

19、T(增强型参数),2.夹断电压VP(耗尽型参数),3.饱和漏电流IDSS(耗尽型参数),4.直流输入电阻RGS(1091015),二、交流参数,1.输出电阻rds,当不考虑沟道调制效应时,0,rds,2.低频互导gm,5.2.1 MOSFET放大电路,1.直流偏置及静态工作点的计算,(1)简单的共源极放大电路(N沟道),直流通路,共源极放大电路,5.2.1 MOSFET放大电路,1.直流偏置及静态工作点的计算,(1)简单的共源极放大电路(N沟道),假设工作在饱和区,即,验证是否满足,如果不满足,则说明假设错误,须满足VGS VT,否则工作在截止区,再假设工作在可变电阻区,即,5.2.1 MOS

20、FET放大电路,2.图解分析,由于负载开路,交流负载线与直流负载线相同,5.2.1 MOSFET放大电路,3.小信号模型分析,(1)模型,=0时,3.小信号模型分析,解:例5.2.2的直流分析已求得:,(2)放大电路分析(例5.2.5),s,3.小信号模型分析,(2)放大电路分析(例5.2.5),s,3.小信号模型分析,(2)放大电路分析(例5.2.6),共漏,3.小信号模型分析,(2)放大电路分析,end,5.3.2 JFET的特性曲线及参数,2.转移特性,1.输出特性,5.3.2 FET放大电路的小信号模型分析法,1.FET小信号模型,(1)低频模型,2.动态指标分析,(1)中频小信号模型

21、,2.动态指标分析,(2)中频电压增益,(3)输入电阻,(4)输出电阻,忽略 rds,,由输入输出回路得,则,通常,则,end,1 零点漂移,增加R2、RE2:用于设置合适的Q点。,问题 1:前后级Q点相互影响。,1.1 直接耦合电路的特殊问题,第六章 模拟集成电路(运算放大器),一、结构,特点:结构对称。,2.1 基本型差动放大器,ui1,ui2,2 差动放大电路,二、抑制零漂的原理,uo=UC1-UC2=0,uo=(UC1+uC1)-(UC2+uC2)=0,当 ui1=ui2=0 时:,当温度变化时:,+UCC,三、共模电压放大倍数AC,+UCC,共模输入信号:ui1=ui2=uC(大小相

22、等,极性相同),理想情况:ui1=ui2 uC1=uC2 uo=0,共模电压放大倍数:,(很小,1),但因两侧不完全对称,uo 0,四、差模电压放大倍数Ad,差模输入信号:ui1=-ui2=ud(大小相等,极性相反),(很大,1),设uC1=UC1+uC1,uC2=UC2+uC2。因ui1=-ui2,uC1=-uC2 uo=uC1-uC2=uC1-uC2=2uC1,差模电压放大倍数:,+UCC,五、共模抑制比(CMRR)的定义,例:Ad=-200 Ac=0.1 KCMRR=20 lg(-200)/0.1=66 dB,CMRR Common Mode Rejection Ratio,KCMRR=

23、,KCMRR(dB)=,(分贝),一、结构,为了使左右平衡,可设置调零电位器:,2.2 双电源长尾式差放,特点:加入射极电阻RE;加入负电源-UEE,采用正负双电源供电。,1、双电源的作用:,(1)使信号变化幅度加大。(2)IB1、IB2由负电源-UEE提供。,温度T,IC,IE=2IC,UE,UBE,IB,IC,2、RE的作用,设ui1=ui2=0,RE 具有强负反馈作用,抑制温度漂移,稳定静态工作点。,3 恒流源式差放电路,电路结构:,rce3 1M,恒流源,T3:放大区,静态分析:主要分析T3管。,VB3VE3 IE3 IC3,1.恒流源相当于阻值很大的电阻。,2.恒流源不影响差模放大倍

24、数。,3.恒流源影响共模放大倍数,使共模放大倍数减小,从而增加共模抑制比,理想的恒流源相当于阻值为无穷的电阻,所以共模抑制比是无穷。,恒流源的作用,6.1.1 BJT电流源电路,1.镜像电流源,T1、T2的参数全同,即12,ICEO1ICEO2,当BJT的较大时,基极电流IB可以忽略,IoIC2IREF,代表符号,6.1.1 BJT电流源电路,动态电阻,一般ro在几百千欧以上,6.1.1 BJT电流源电路,2.微电流源,所以IC2也很小。,6.1.2 FET电流源,3.JFET电流源,end,(a)电路(b)输出特性,6.2.1 差分式放大电路的一般结构,1.用三端器件组成的差分式放大电路,6

25、.2.1 差分式放大电路的一般结构,2.有关概念,差模信号,共模信号,差模电压增益,共模电压增益,总输出电压,共模信号产生的输出,共模抑制比,反映抑制零漂能力的指标,6.2.1 差分式放大电路的一般结构,1.用三端器件组成的差分式放大电路,6.2.1 差分式放大电路的一般结构,2.有关概念,差模信号,共模信号,差模电压增益,共模电压增益,总输出电压,共模信号产生的输出,共模抑制比,反映抑制零漂能力的指标,6.2.1 差分式放大电路的一般结构,2.有关概念,根据,有,共模信号相当于两个输入端信号中相同的部分 差模信号相当于两个输入端信号中不同的部分,两输入端中的共模信号大小相等,相位相同;差模信

26、号大小相等,相位相反。,6.2.2 射极耦合差分式放大电路,1.电路组成及工作原理,6.2.2 射极耦合差分式放大电路,1.电路组成及工作原理,静态,动态,仅输入差模信号,,大小相等,相位相反。,大小相等,,信号被放大。,相位相反。,1.电路组成及工作原理,这一过程类似于分压式射极偏置电路的温度稳定过程。所以,即使电路处于单端输出方式时,仍有较强的抑制零漂能力。,2.抑制零点漂移原理,差分式放大电路对共模信号有很强抑制作用,3.主要指标计算,(1)差模情况,接入负载时,双入、双出,3.主要指标计算,(1)差模情况,双入、单出,接入负载时,3.主要指标计算,(1)差模情况,单端输入,等效于双端输

27、入,指标计算与双端输入相同。,3.主要指标计算,(2)共模情况,双端输出,共模信号的输入使两管集电极电压有相同的变化。,所以,共模增益,单端输出,抑制零漂能力增强,3.主要指标计算,(2)共模情况,(3)共模抑制比,双端输出,理想情况,单端输出,抑制零漂能力,越强,单端输出时的总输出电压,(4)频率响应,高频响应与共射电路相同,低频可放大直流信号。,7.1.1 什么是反馈,将电子系统输出回路的电量(电压或电流),送回到输入回路的过程。,内部反馈,外部反馈,输出信号,反馈放大电路的输入信号,反馈信号,基本放大电路的输入信号(净输入信号),7.1.1 什么是反馈,框图,反馈通路信号反向传输的渠道,

28、开环 无反馈通路,闭环 有反馈通路,7.1.2 直流反馈与交流反馈,根据反馈到输入端的信号是交流(改善动态性能),还是直流(稳定直流工作点),或同时存在,来进行判别。,直流反馈,交、直流反馈,7.1.3 正反馈与负反馈,正反馈:输入量不变时,引入反馈后输出量变大了。,负反馈:输入量不变时,引入反馈后输出量变小了。,从输出端看,从输入端看,正反馈:引入反馈后,使净输入量变大了。,负反馈:引入反馈后,使净输入量变小了。,净输入量可以是电压,也可以是电流。,7.1.3 正反馈与负反馈,判别方法:瞬时极性法。即在电路中,从输入端开始,沿着 信号流向,标出某一时刻有关节点电压变化的斜率(正斜率或负斜率,

29、用“+”、“-”号表示)。,净输入量减小,净输入量增大,负反馈,正反馈,反馈通路,反馈通路,7.1.4 串联反馈与并联反馈,由反馈网络在放大电路输入端的连接方式判定,串联,串联:输入以电压形式求和(KVL)-vi+vid+vf=0 即 vid=vi-vf,并联:输入以电流形式求和(KCL)ii-iid-if=0 即 iid=ii-if,并联,7.1.5 电压反馈与电流反馈,电压反馈与电流反馈由反馈网络在放大电路输出端的取样对象决定,电压反馈:反馈信号xf和输出电压成比例,即xf=Fvo电流反馈:反馈信号xf与输出电流成比例,即xf=Fio,并联结构,串联结构,7.1.5 电压反馈与电流反馈,判

30、断方法:负载短路法,将负载短路,反馈量仍然存在电流反馈。,将负载短路(未接负载时输出对地短路),反馈量为零电压反馈。,电压反馈,电流反馈,反馈通路,反馈通路,电压负反馈:稳定输出电压,具有恒压特性,串联反馈:输入端电压求和(KVL),电流负反馈:稳定输出电流,具有恒流特性,并联反馈:输入端电流求和(KCL),1.闭环增益的一般表达式,开环增益,反馈系数,闭环增益,因为,所以,已知,闭环增益的一般表达式,即,7.3 负反馈放大电路增益的一般表达式,负反馈放大电路中各种信号量的含义,7.3 负反馈放大电路增益的一般表达式,2.反馈深度讨论,一般负反馈,称为反馈深度,深度负反馈,正反馈,自激振荡,一

31、般情况下,A和F都是频率的函数,当考虑信号频率的影响时,Af、A和F分别用、和 表示。,即,end,7.3 负反馈放大电路增益的一般表达式,7.4.1 提高增益的稳定性,闭环时,对A求导得,只考虑幅值有,即闭环增益相对变化量比开环减小了1+AF,另一方面,在深度负反馈条件下,即闭环增益只取决于反馈网络。当反馈网络由稳定的线性元件组成时,闭环增益将有很高的稳定性。,负反馈的组态不同,稳定的增益不同(Avf、Arf、Agf、Aif),7.4.2 减小非线性失真,闭环时增益减小,线性度变好。,只能减少环内放大电路产生的失真,如果输入波形本身就是失真的,即使引入负反馈,也无济于事。,1开环特性2闭环特

32、性,7.4.3 抑制反馈环内噪声,比原有的信噪比提高了 倍,电压的信噪比,新的信噪比,7.4.4 对输入电阻和输出电阻的影响,串联负反馈,1.对输入电阻的影响,开环输入电阻 Ri=vid/ii,因为 vf=Fxo xo=Avid,闭环输入电阻 Rif=vi/ii,所以 vi=vid+vf=(1+AF)vid,闭环输入电阻 Rif=vi/ii,引入串联负反馈后,输入电阻增加了。,7.4.4 对输入电阻和输出电阻的影响,并联负反馈,1.对输入电阻的影响,闭环输入电阻,引入并联负反馈后,输入电阻减小了。,注意:反馈对输入电阻的影响仅限于环内,对环外不产生影响。,2.对输出电阻的影响,闭环输出电阻,电

33、压负反馈,而 Xid=-Xf=-FvT,忽略反馈网络对iT的分流,所以,引入电压负反馈后,输出电阻减小了。,7.4.4 对输入电阻和输出电阻的影响,2.对输出电阻的影响,电流负反馈,闭环输出电阻,引入电流负反馈后,输出电阻增大了。,注意:反馈对输出电阻的影响仅限于环内,对环外不产生影响。,负反馈对放大电路性能的改善,是以牺牲增益为代价的,且仅对环内的性能产生影响。,串联负反馈,并联负反馈,电压负反馈,电流负反馈,增大输入电阻,减小输入电阻,减小输出电阻,稳定输出电压,增大输出电阻,稳定输出电流,7.4.4 对输入电阻和输出电阻的影响,end,1.深度负反馈的特点,即,深度负反馈条件下,闭环增益

34、只与反馈网络有关,由于,则,又因为,代入上式,得,(也常写为 xf xi),净输入量近似等于零,由此可得深度负反馈条件下,基本放大电路“两虚”的概念,输入量近似等于反馈量,(xid 0),1.深度负反馈的特点,串联负反馈,输入端电压求和,深度负反馈条件下 xid=xi-xf 0,虚短,虚断,虚短,虚断,并联负反馈,输入端电流求和,vid=iid ri 0,7.8.1 自激振荡及稳定工作的条件,1.自激振荡现象,在不加任何输入信号的情况下,放大电路仍会产生一定频率的信号输出。,2.产生原因,在高频区或低频区产生的附加相移达到180,使中频区的负反馈在高频区或低频区变成了正反馈,当满足了一定的幅值

35、条件时,便产生自激振荡。,7.8.1 自激振荡及稳定工作的条件,3.自激振荡条件,自激振荡,反馈深度,即,又,得自激振荡条件,幅值条件,相位条件(附加相移),注:输入端求和的相位(-1)不包含在内,闭环增益,1.功率放大电路的特点及主要研究对象,(1)功率放大电路的主要特点,功率放大电路是一种以输出较大功率为目的的放大电路。因此,要求同时输出较大的电压和电流。管子工作在接近极限状态。,(2)要解决的问题,提高效率,减小失真,管子的保护,一般直接驱动负载,带载能力要强。,2.功率放大电路提高效率的主要途径,降低静态功耗,即减小静态电流。,种工作状态,根据正弦信号整个周期内三极管的导通情况划分,乙

36、类:导通角等于180,甲类:一个周期内均导通前面介绍的电压放大属于此类,甲乙类:导通角大于180,end,由一对NPN、PNP特性相同的互补三极管组成,采用正、负双电源供电。这种电路也称为OCL互补功率放大电路。,1.电路组成,2.工作原理,两个三极管在信号正、负半周轮流导通,使负载得到一个完整的波形。,8.3 乙类双电源互补对称功率放大电路,8.3.2 分析计算,图解分析,1.最大不失真输出功率Pomax,实际输出功率,8.3.2 分析计算,忽略VCES时,8.3.2 分析计算,单个管子在半个周期内的管耗,2.管耗PT,两管管耗,3.电源供给的功率PV,当,4.效率,当,8.3.2 分析计算

37、,8.4.1 甲乙类双电源互补对称电路,乙类互补对称电路存在的问题,8.4.1 甲乙类双电源互补对称电路,1.静态偏置,可克服交越失真,2.动态工作情况,二极管等效为恒压模型,设T3已有合适的静态工作点,交流相当于短路,8.4.1 甲乙类双电源互补对称电路,VBE4可认为是定值,R1、R2不变时,VCE4也是定值,可看作是一个直流电源。,8.4.2 甲乙类单电源互补对称电路,静态时,偏置电路使VKVCVCC/2(电容C充电达到稳态)。,end,当有信号vi时负半周T1导通,有电流通过负载RL,同时向C充电,正半周T2导通,则已充电的电容C通过负载RL放电。,只要满足RLC T信,电容C就可充当

38、原来的VCC。,计算Po、PT、PV和PTm的公式必须加以修正,以VCC/2代替原来公式中的VCC。,9.5 正弦波振荡电路的振荡条件,正反馈放大电路框图(注意与负反馈方框图的差别),1.振荡条件,若环路增益,则,又,所以振荡条件为,振幅平衡条件,相位平衡条件,起振条件,2.起振和稳幅,#振荡电路是单口网络,无须输入信号就能起振,起振的信号源来自何处?,电路器件内部噪声以及电源接通扰动,当输出信号幅值增加到一定程度时,就要限制它继续增加,否则波形将出现失真。,噪声中,满足相位平衡条件的某一频率0的噪声信号被放大,成为振荡电路的输出信号。,稳幅的作用就是,当输出信号幅值增加到一定程度时,使振幅平

39、衡条件从 回到,end,放大电路(包括负反馈放大电路),3.振荡电路基本组成部分,反馈网络(构成正反馈的),选频网络(选择满足相位平衡条件的一个频率。经常与反馈 网络合二为一。),稳幅环节,反馈网络兼做选频网络,RC桥式振荡电路,9.6 RC正弦波振荡电路,9.7.1 LC选频放大电路,等效损耗电阻,当 时,,电路谐振。,为谐振频率,谐振时,阻抗最大,且为纯阻性,同时有,即,1.并联谐振回路,9.7.1 LC选频放大电路,阻抗频率响应,(a)幅频响应(b)相频响应,9.7.1 LC选频放大电路,2.选频放大电路,9.7.2 变压器反馈式LC振荡电路,虽然波形出现了失真,但由于LC谐振电路的Q值

40、很高,选频特性好,所以仍能选出0的正弦波信号。,1.电路结构,2.相位平衡条件,3.幅值平衡条件,4.稳幅,5.选频,(定性分析),9.7.3 三点式LC振荡电路,仍然由LC并联谐振电路构成选频网络,A.若中间点交流接地,则首端与尾端 相位相反。,1.三点式LC并联电路,中间端的瞬时电位一定在首、尾端电位之间。,三点的相位关系,B.若首端或尾端交流接地,则其他两 端相位相同。,9.7.3 三点式LC振荡电路,2.电感三点式振荡电路,9.7.3 三点式LC振荡电路,3.电容三点式振荡电路,9.8.1 电压比较器,,由于|vO|不可能超过VM,,特点:,1.单门限电压比较器,(1)过零比较器,开环

41、,虚短不成立,增益A0大于105,(忽略了放大器输出级的饱和压降),所以,当|+VCC|=|-VEE|=VM=15V,A0=105 时,,可以认为,vI 0 时,vOmax=+VCC,vI 0 时,vOmax=-VEE,(过零比较器),运算放大器工作在非线性状态下,9.8.1 电压比较器,特点:,1.单门限电压比较器,(1)过零比较器,开环,虚短不成立,增益A0大于105,输入为正负对称的正弦波时,输出为方波。,电压传输特性,9.8.1 电压比较器,1.单门限电压比较器,(2)门限电压不为零的比较器,电压传输特性,(门限电压为VREF),9.8.1 电压比较器,1.单门限电压比较器,(2)门限

42、电压不为零的比较器,(门限电压为VREF),(a)VREF0时,(b)VREF2V时,(c)VREF4V时,vI为峰值6V的三角波,设VCC12V,运放为理想器件。,9.8.1 电压比较器,2.迟滞比较器,(1)电路组成,(2)门限电压,门限电压,上门限电压,下门限电压,回差电压,9.8.1 电压比较器,2.迟滞比较器,(3)传输特性,9.8.2 方波产生电路,1.电路组成(多谐振荡电路),稳压管双向限幅,9.8.2 方波产生电路,2.工作原理,由于迟滞比较器中正反馈的作用,电源接通后瞬间,输出便进入饱和状态。,假设为正向饱和状态,3.占空比可变的方波产生电路,9.8.2 方波产生电路,9.8

43、.3 锯齿波产生电路,end,同相输入迟滞比较器,积分电路,充放电时间常数不同,直流稳压电源,将交流电网电压转换为直流电压,为放大电路提供直流工作电源。,组成,各部分功能,变压器:,整流:,滤波:,稳压:,end,降压,滤除脉动,交流变脉动直流,进一步消除纹波,提高电压的稳定性和带载能力,1.工作原理,10.1.1 单相桥式整流电路,利用二极管的单向导电性,10.1.1 单相桥式整流电路,3.纹波系数,2.VL和IL,4.平均整流电流,5.最大反向电压,10.1.2 滤波电路,电容滤波电路,10.1.2 滤波电路,电容滤波的特点,A.二极管的导电角,,流过二极管的瞬时电流很大。,B.负载直流平均电压 VL 升高,d=RLC 越大,VL 越高,C.直流电压 VL 随负载电流增加而减少,1.结构,10.2.2 串联反馈式稳压电路的工作原理,10.2.2 串联反馈式稳压电路的工作原理,2.工作原理,输入电压波动,负载电流变化,输出电压变化,电压串联负反馈,所以输出电压,满足深度负反馈,根据虚短和虚断有,(+),(+),(+),(+),

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号