11成组两样本资料的t检验.ppt

上传人:sccc 文档编号:6003887 上传时间:2023-09-13 格式:PPT 页数:31 大小:306.52KB
返回 下载 相关 举报
11成组两样本资料的t检验.ppt_第1页
第1页 / 共31页
11成组两样本资料的t检验.ppt_第2页
第2页 / 共31页
11成组两样本资料的t检验.ppt_第3页
第3页 / 共31页
11成组两样本资料的t检验.ppt_第4页
第4页 / 共31页
11成组两样本资料的t检验.ppt_第5页
第5页 / 共31页
点击查看更多>>
资源描述

《11成组两样本资料的t检验.ppt》由会员分享,可在线阅读,更多相关《11成组两样本资料的t检验.ppt(31页珍藏版)》请在三一办公上搜索。

1、成组设计两样本均数的比较,内容,成组设计,成组设计:可以是实验性研究中的随机分组,也可以是观察性研究中的不同人群随机抽样。在实验性研究中,将受试对象随机分成二组或更多组,每个受试对象均有相同的机会进入其中的任何一组。,平行对照研究设计,随机对照研究设计举例,为了评价某药治疗视疲劳的疗效,采用随机对照试验,收集400名符合视疲劳诊断的患者,随机分成两组,每组200人。试验组受试者滴用该试验药,对照组受试者滴用人工泪眼,经过四周治疗后,停止滴药1周,然后测定两组受试者的视疲劳症状评分,比较两组视疲劳的平均分的差异。,成组设计,病例对照研究举例,为了评价某个单核苷酸多态性的变异性(CNVs)与肝癌患

2、者的关联性,某研究者采用病例对照设计:在肝癌患者人群中随机抽取500人作为病例组在乙肝患者(不是肝癌患者)的人群中随机抽取500人作为对照组测量这些对象的该单核苷酸多态性的CNVs,比较两组的CNVs的平均水平的差异性。,横断面调查研究举例,横断面调查研究举例,某地区有10万人口,其中未患高血压的对象至少有7万人,在该地区随机抽取2000非高血压患者,调查这些对象是否有高血压家族史,以及这些对象的收缩压和舒张压,得到有家族史和没有家族史的两组人的收缩压和舒张压,试比较两组人的收缩压的平均水平。,两个独立样本平均水平的比较,两个独立样本平均水平的比较可以是两样本t检验,也可以两样本秩和检验。考虑

3、到检验效能的原因,一般采用下列统计分析策略:如果满足每组资料近似呈正态分布(或大样本)并且方差齐性(1=2),则可用两样本t检验;如果满足每组资料近似呈正态分布(或大样本)但方差不齐(12),则可用两样本t检验;否则可以用两样本的Wilcoxon秩和检验,两组资料平均水平比较,例:在某个降血糖药的临床研究中,共收集36个糖尿病患者,随机分为第一组和第二组,第一组服用A药,第二组服用B药,经过治疗6个月后,检查这些对象的糖化血红蛋白,试比较两个降血糖药的疗效。,两样本进行t检验举例,首选t检验,但要求每组资料服从正态分布,方差齐性。因此首先考虑的对每组资料进行正态性检验(=0.05)H0:资料服

4、从正态分布 H1:资料服从偏态分布借助Stata软件进行正态性检验,A组:资料正态性检验的P=0.5107 B组:资料正态性检验的P=0.9162均不能否认两组资料分别近似正态分布。,两样本进行t检验举例,方差齐性检验(=0.10)H0:两组对应的总体方差相等 H1:两组对应的总体方差不相等方差齐性检验统计量,两样本进行t检验举例,可以证明:当两个总体方差齐性时,统计量F靠近1附近,服从自由度分别为n1-1,n2-1的F分布,反之,如果两个总体方差不等时,F值增大。故可以上述统计量检验方差齐性的问题。F=1.065,查表可知:P=0.89780.1,故方差齐性。,两样本t检验简述,即:两个样本

5、所在的两个总体的总体均数相等即:两个样本所在的两个总体的总体均数不相等=0.05,两样本t检验简述,检验统计量两个样本均数之差的标准误,正态分布总体的抽样分布性质,样本1:服从正态分布,总体均数为,总体标准差,样本均数和样本标准差为样本2:服从正态分布,总体均数为,总体标准差,样本均数和样本标准差为则,两样本t检验检验简述,两个样本t检验简述,当,1-,两个样本t检验示意图,H0:2=2,本例计算,拒绝H0,由第一组的样本均数低于第二组,推断A药的降糖效果优于B药。,成组t检验的推断,当P0.05,拒绝H0,认为H1为真,可以证明:P0.05所对应的两个均数之差的95%可信区间一定不包含0。由

6、此可以借助95%CI推断两个总体均数的大小。实际上在P0.05的前提下,根据两个样本均数大小就可以推断那个总体均数更大。,两样本进行t检验小结,H0为真时,在大多数情况下,t检验统计量随机地出现在0点附近,并且t检验统计量服从自由度为n1+n2-2的t分布,出现|t|t0.05/2,n1+n2-2的概率为0.05,是一个小概率事件。H1为真时,在大多数情况下,t检验统计量偏离0点甚至远离0点,出现|t|t0.05/2,n1+n2-2的概率为Power=1-,样本量较大时,Power可以达到0.8以上。故当出现|t|t0.05/2,n1+n2-2,不认为偶然出现的小概率事件,而是H1为真更可能,

7、故可以拒绝H0。,t检验条件,t检验的应用条件和注意事项两个小样本均数比较的t检验有以下应用条件:1.两样本来自的总体均符合正态分布,正态性检验(=0.05)或者样本量较大时无需正态性检验2.两个样本是独立的(从背景上判断)3.两样本来自的总体方差齐性。4.在进行两小样本均数比较的t检验之前,要用方差齐性检验来推断两样本代表的总体方差是否相等,方差齐性检验的方法使用F检验(=0.10)。F检验原理是看较大样本方差与较小样本方差的商是否接近“1”。若接近“1”,则可认为两样本代表的总体方差齐。判断两样本来自的总体是否符合正态分布,可用正态性检验的方法。,两组资料平均水平比较举例,例:为研究接触某

8、重金属对人体血胰岛素水平有无影响,研究者从接触该重金属的职业工人中随机抽取14人,从非接触工人中随机抽取14人,测量每个工人的血胰岛素水平(uLU/ml),试分析上述两个人群的血胰岛素平均水平有无差异。,两组资料平均水平比较举例,上述资料进行方差齐性检验,下列结果表明方差不齐,对于方差不齐的情况,如果每组资料服从正态分布,但方差不齐,则可以用t检验t检验 但要根据方差不齐的严重程度调整自由度(见教材),其它与t检验相同。,对于方差不齐的情况,其自由度按Satterthwaite公式计算:当H0成立时,t统计量服从自由度为的t分布。当H1为真时,t统计量的绝对值一般较大或很大,故可以拒绝H0。,两组资料平均水平比较举例,不满足t检验条件的两样本比较,不满足t检验条件,可以用 Two-sample Wilcoxon rank sum test(秩和检验)亦称 Mann-Whitney two-sample test 要求两组资料是独立的!,Thank You!,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号