关系数据模型之范式.ppt

上传人:小飞机 文档编号:6091901 上传时间:2023-09-23 格式:PPT 页数:30 大小:243.50KB
返回 下载 相关 举报
关系数据模型之范式.ppt_第1页
第1页 / 共30页
关系数据模型之范式.ppt_第2页
第2页 / 共30页
关系数据模型之范式.ppt_第3页
第3页 / 共30页
关系数据模型之范式.ppt_第4页
第4页 / 共30页
关系数据模型之范式.ppt_第5页
第5页 / 共30页
点击查看更多>>
资源描述

《关系数据模型之范式.ppt》由会员分享,可在线阅读,更多相关《关系数据模型之范式.ppt(30页珍藏版)》请在三一办公上搜索。

1、第4章 关系数据库理论,4.3 范式,规范化的基本思想是消除关系模式中的数据冗余,消除数据依赖中的不合适的部分,解决数据插入、删除时发生异常现象。这就要求关系数据库设计出来的关系模式要满足一定的条件。我们把关系数据库的规范化过程中为不同程度的规范化要求设立的不同标准称为范式(Normal Form)。由于规范化的程度不同,就产生了不同的范式。满足最基本规范化要求的关系模式叫第一范式,在第一范式中进一步满足一些要求为第二范式,以此类推就产生了第三、四范式等概念。每种范式都规定了一些限制约束条件。最重要的是3NF和BCNF。这是进行规范化的主要目标。,范式的概念最早由E.F.Codd提出。从197

2、1年起,Codd相继提出了关系的三级规范化形式,即第一范式(1NF)、第二范式(2NF)、第三范式(3NF)。1974年,Codd和Boyce以共同提出了一个新的范式的概念,即Boyce-Codd范式,简称BC范式。1976年Fagin提出了第四范式,后来又有人定义了第五范式。至此在关系数据库规范中建立了一个范式系列:1NF,2NF,3NF,BCNF,4NF,5NF,一级比一级有更严格的要求。各个范式之间的联系可以表示为:5NF 4NF BCNF 3NF 2NF 1NF如图4.3所示。,图4.3 各种范式之间的关系1NF,2NF,3NF,BCNF,4NF,5NF,一级比一级有更严格的要求。下面

3、逐一介绍各级范式及其规范化。,4.3.1 第一范式第一范式(First Normal Form)是最基本的规范形式,即关系中每个属性都是不可再分的简单项。定义4.4 如果关系模式R,其所有的属性均为简单属性,即每个属性都城是不可再分的,则称R属于第一范式,简称1NF,记作R1NF。在第2章讨论关系的性质时,我们把满足这个条件的关系称为规范化关系。在关系数据库系统中只讨论规范化的关系,凡是非规范化的关系模式必须化成规范化的关系。在非规范化的关系中去掉组合项就能化成规范化的关系。每个规范化的关系都属于1NF,这也是它之所以称为“第一”的原因。,然而,一个关系模式仅仅属于第一范式是不适用的。在4.1

4、节中给出的关系模式SCD属于第一范式,但其具有大量的数据冗余,具有插入异常、删除异常、更新异常等弊端。为什么会存在这种问题呢?让我们分析一下SCD中的函数依赖关系,它的关系键是(SNO,CNO)的属性组合,所以有:(SNO,CNO)SCORESNOSN,(SNO,CNO)SNSNOAGE,(SNO,CNO)AGESNODEPT,(SNO,CNO)DEPTSNO MN,(SNO,CNO)MN,我们可以用函数信赖图表示以上函数依赖关系,如图4.4所示。,由此可见,在SCD中,既存在完全函数依赖,又存在部分函数依赖和传递函数依赖。这种情况往往在数据库中是不允许的,也正是由于关系中存在着复杂的函数依赖

5、,才导致数据操作中出现了种弊端。克服这些弊端的方法是用投影运算将关系分解,去掉过于复杂的函数依赖关系,向更高一级的范式进行转换。,4.3.2 第二范式4.3.2.1 第二范式的定义定义4.5 如果关系模式R1NF,且每个非主属性都完全函数依赖于R的每个关系键,则称R属于第二范式(Second Normal Form),简称2NF,记作R2NF。在关系模式SCD中,SNO,CNO为主属性,AGE,DEPT,MN,MN,SCORE均为非主属性,经上述分析,存在非主属性对关系键的部分函数依赖,所以SCD2NF。而如图4.2所示的由SCD分解的三个关系模式S,D,SC,其中S的关系键为SNO,D的关系

6、键为DEPT,都是单属性,不可能存在部分函数依赖。而对于SC,(SNO,CNO)SCORE。所以SCD分解后,消除了非主属性对关系键的部分函数依赖,S,D,SC均属于2NF。,又如在2.4.2中,讲述全码的概念时给出的关系模式TCS(T,C,S),一个教师可以讲授多门课程,一门课程可以为多个教师讲授,同样一个学生可以选听多门课程,一门课程可以为多个学生选听,(T,C,S)三个属性的组合是关系键,T,C,S都是主属性,而无非主属性,所以也就不可能存在非主属性对关系键的部分函数依赖,TCS2NF。经以上分析,可以得到两个结论:1从1NF关系中消除非主属性对关系键的部分函数依赖,则可得到2NF关系。

7、2如果R的关系键为单属性,或R的全体属性均为主属性,则R2NF。,4.3.2.2 2NF规范化2NF规范化是指把1NF关系模式通过投影分解转换成2NF关系模式的集合。分解时遵循的基本原则就是“一事一地”,让一个关系只描述一个实体或者实体间的联系。如果多于一个实体或联系,则进行投影分解。下面以关系模式SCD为例,来说明2NF规范化的过程例4.1 将SCD(SNO,SN,AGE,DEPT,MN,CNO,SCORE)规范到2NF。由SNOSN,SNOAGE,SNODEPT,(SNO,CNO)SCORE,可以判断,关系SCD至少描述了两个实体,一个为学生实体,属性有SNO、SN、AGE、DEPT、MN

8、;另一个是学生与课程的联系(选课),属性有SNO、CNO和SCORE。根据分解的原则,我们可以将SCD分解成如下两个关系,如图4.5所示。,SD(SNO,SN,AGE,DEPT,MN),描述学生实体;SC(SNO,CNO,SCORE),描述学生与课程的联系。SD,SC,图4.5 关系SD和SC,对于分解后的两个关系SD和SC,主键分别为SNO和(SNO,CNO),非主属性对主键完全函数依赖。因此,SD2NF,SC2NF,而且前面已经讨论,SCD的这种分解没有丢失任何信息,具有无损连接性。分解后,SD和SC的函数依赖分别如图4.6和4.7所示。,图4.6 SD中的函数依赖关系 图4.7 SC中的

9、函数依赖关系,1NF的关系模式经过投影分解转换成2NF后,消除了一些数据冗余。分析图4.5中SD和SC中的数据,可以看出,它们存储的冗余度比关系模式SCD有了较大辐度的降低。学生的姓名、年龄不需要重复存储多次。这样便可在一定程度上避免数据更新所造成的数据不一致性的问题。由于把学生的基本信息与选课信息分开存储,则学生基本信息因没选课而不能插入的问题得到了解决,插入异常现象得到了部分改善。同样,如果某个学生不再选修C1课程,只在选课关系SC中删去该该学生选修C1的记录即可,而SD中有关该学生的其它信息不会受到任何影响,也解决了部分删除异常问题。因此可以说关系模式SD和SC在性能上比SCD有了显著提

10、高。,下面对2NF规范化作形式化的描述。设关系模式R(X,Y,Z),R1NF,但R2NF,其中,X是键属性,Y,Z是非键属性,且存在部分函数依赖,X Y。设X可表示为X1、X2,其中X1 Y。则R(X,Y,Z)可以分解为RX1,Y和RX,Z。因为X1Y,所以R(X,Y,Z)=RX1,Y*RX1,X2,Z=RX1,Y*RX,Z,即R等于其投影RX1,Y和X,Z在X1上的自然连接,R的分解具有无损连接性。由于X1 Y,因此RX1,Y2NF。若RX,Z 2NF,可以按照上述方法继续进行投影分解,直到将RX,Z分解为属于2NF关系的集合,且这种分解必定是有限的。,4.3.2.3 2NF的缺点2NF的关

11、系模式解决了1NF中存在的一些问题,2NF规范化的程度比1NF前进了一步,但2NF的关系模式在进行数据操作时,仍然存在着一些问题:1数据冗余。每个系名和系主任的名字存储的次数等于该系的学生人数。2插入异常。当一个新系没有招生时,有关该系的信息无法插入。3删除异常。某系学生全部毕业而没有招生时,删除全部学生的记录也随之删除了该系的有关信息。4更新异常。更换系主任时,仍需改动较多的学生记录。之所以存在这些问题,是由于在SCD中存在着非主属性对主键的传递依赖。分析SCD中的函数依赖关系,SNOSN,SNOAGE,SNODEPT,DEPTMN,SNO MN,非主属性MN对主键SNO传递依赖。为此,对关

12、系模式SCD还需进一步简化,消除这种传递依赖,得到3NF。,4.3.3 第三范式4.3.3.1 第三范式的定义定义4.6 如果关系模式R2NF,且每个非主属性都不传递依赖于R的每个关系键,则称R属于第三范式(Third Normal Form),简称3NF,记作R3NF。第三范式具有如下性质:1如果R3NF,则R也是2NF。,2如果R2NF,则R不一定是3NF。例如,我们前面由关系模式SCD分解而得到的SD和SC都为2NF,其中,SC3NF,但在SD中存在着非主属性MN对主键SNO传递依赖,SD3NF。对于SD,应该进一步进行分解,使其转换成3NF。4.3.3.2 3NF规范化3NF规范化是指

13、把2NF关系模式通过投影分解转换成3NF关系模式的集合。和2NF的规范化时遵循的原则相同,即“一事一地”,让一个关系只描述一个实体或者实体间的联系。下面以2NF关系模式SD为例,来说明3NF规范化的过程。,例4.2将SD(SNO,SN,AGE,DEPT,MN)规范到3NF。分析SD的属性组成,可以判断,关系SD实际上描述了两个实体:一个为学生实体,属性有SNO,SN,AGE,DEPT;另一个是系的实体,其属性DEPT和MN。根据分解的原则,我们可以将SD分解成如下两个关系,如图4.8所示。S(SNO,SN,AGE,DEPT),描述学生实体;D(DEPT,MN),描述系的实体。,S D,对于分解

14、后的两个关系S和D,主键分别为SNO和DEPT,不存在非主属性对主键的传递函数依赖。因此,S3NF,D3NF。,图4.8 关系S和D,分解后,S和D的函数依赖分别如图4.9和4.10所示。,由以上两图可以看出,关系模式SD由2NF分解为3NF后,函数依赖关系变得更加简单,既没有非主属性对键的部分依赖,也没有非主属性对键的传递依赖,解决了2NF中存在的四个问题。,1数据冗余降低。系主任的名字存储的次数与该系的学生人数无关,只在关系D中存储一次。2不存在插入异常。当一个新系没有学生时,该系的信息可以直接插入到关系D中,而与学生关系S无关。3不存在删除异常。要删除某系的全部学生而仍然保留该系的有关信

15、息时,可以只删除学生关系S中的相关学生记录,而不影响系关系D中的数据。4不存在更新异常。更换系主任时,只需修改关系D中一个相应元组的MN属性值,从而不会出现数据的不一致现象。SCD规范到3NF后,所存在的异常现象已经全部消失。但是,3NF只限制了非主属性对键的依赖关系,而没有限制主属性对键的依赖关系。如果发生了这种依赖,仍有可能存在数据冗余、插入异常、删除异常和修改异常。这时,则需对3NF进一步规范化,消除主属性对键的依赖关系,为了解决这种问题,Boyce与Codd共同提出了一个新范式的定义,这就是Boyce-Codd范式,通常简称BCNF或BC范式。它弥补了3NF的不足。,4.3.4 BC范

16、式4.3.4.1 BC范式的定义定义4.7 如果关系模式R1NF,且所有的函数依赖XY(Y X),决定因素X都包含了R的一个候选键,则称R属于BC范式(Boyce-Codd Normal Form),记作RBCNF。BCNF具有如下性质:1满足BCNF的关系将消除任何属性(主属性或非主属性)对键的部分函数依赖和传递函数依赖。也就是说,如果RBCNF,则R也是3NF。证明:采用反证法。设R不是3NF。则必然存在如下条件的函数依赖,XY(Y X),YZ,其中X是键属性,Y是任意属性组,Z是非主属性,Z Y,这样YZ函数依赖的决定因素Y不包含候选键,这与BCNF范式的定义相矛盾,所以如果RBCNF,

17、则R也是3NF。,2如果R3NF,则R不一定是BCNF。现举例说明。设关系模式SNC(SNO,SN,CN0,SCORE),其中SNO代表学号,SN代表学生姓名并假设没有重名,CNO代表课程号,SCORE代表成绩。可以判定,SNC有两个候选键(SNO,CNO)和(SN,CNO),其函数依赖如下:SNO SN(SNO,CNO)SCORE(SN,CNO)SCORE。唯一的非主属性SCORE对键不存在部分函数依赖,也不存在传递函数依赖。所以SNC3NF。但是,因为SNO SN,即决定因素SNO或SN不包含候选键,从另一个角度说,存在着主属性对键的部分函数依赖:(SNO,CNO)SN,(SN,CNO)S

18、NO,所以SNC不是BCNF。正是存在着这种主属性对键的部分函数依赖关系,造成了关系SNC中存在着较大的数据冗余,学生姓名的存储次数等于该生所选的课程数。从而会引起修改异常。比如,当要更改某个学生的姓名时,则必须搜索出现该姓名的每个学生记录,并对其姓名逐一修改,这样容易造成数据的不一致问题。解决这一问题的办法仍然是通过投影分解进一步提高SNC的范式等级,将SNC规范到BCNF。,4.3.4.2 BCNF规范化BCNF规范化是指把3NF关系模式通过投影分解转换成BCNF关系模式的集合。下面以3NF关系模式SNC为例,来说明BCNF规范化的过程。例4.3将SNC(SNO,SN,CNO,SCORE)

19、规范到BCNF。分析SNC数据冗余的原因,是因为在这一个关系中存在两个实体,一个为学生实体,属性有SNO、SN;另一个是选课实体,属性有SNO、CNO和SCORE。根据分解的原则,我们可以将SNC分解成如下两个关系:S1(SNO,SN),描述学生实体;S2(SNO,CNO,SCORE),描述学生与课程的联系。对于S1,有两个候选键SNO和SN,对于S2,主键为(SNO,CNO)。在这两个关系中,无论主属性还是非主属性都不存在对键的部分依赖和传递依赖,S1BCNF,S2BCNF。,分解后,S1和S2的函数依赖分别如图4.11和4.12所示。,图4.11 S1中的函数依赖关系 图4.12 S2中的

20、函数依赖关系,关系SNC转换成BCNF后,数据冗余度明显降低。学生的姓名只在关系S1中存储一次,学生要改名时,只需改动一条学生记录中的相应的SN值,从而不会发生修改异常。,例4.4设关系模式TCS(T,C,S),T表示教师,C表示课程,S表示学生。语义假设是,每一位教师只讲授一门课程;每门课程由多个教师讲授;某一学生选定某门课程,就对应于一确定的教师。根据语义假设,TCS的函数依赖是:(S,C)T,(S,T)C,TC。函数依赖图如图4.13所示。,4.13 TCS中的函数依赖关系,对于TCS,(S,C)和(S,T)都是候选键,两个候选键相交,有公共的属性S。TCS中不存在非主属性,也就不可能存

21、在非主属性对键的部分依赖或传递依赖,所以TCS3NF。但从TCS的一个关系实例(如图4.14)分析,仍存在一些问题。,图4.14 关系TCS,1数据冗余。虽然每个教师只开一门课,但每个选修该教师该该门课程的学生元组都要记录这一信息。2插入异常。当某门课程本学期不开,自然就没有学生选修。没有学生选修,因为主属性不能为空,教师上该门课程的信息就无法插入。同样原因,学生刚入校,尚未选课,有关信息也不能输入。3删除异常。如果选修某门课程的学生全部毕业,删除学生记录的同时,随之也删除了教师开设该门课程的信息。4更新异常。当某个教师开设的某门课程改名后,所有选修该教师该门课程的学生元组都要进行修改,如果漏

22、改某个数据,则破坏了数据的完整性。,分析出现上述问题的原因在于主属性部分依赖于键,(S,T)C,因此关系模式还继续分解,转换成更高一级的范式BCNF,以消除数据库操作中的异常现象。将TCS分解为两个关系模式ST(S,T)和TC(T,C),消除函数依赖(S,T)C。其中ST的键为S,TC的键为T。STBCNF,TCBCNF。这两个关系模式的函数依赖图分别如图4.15和4.16所示。,图4.15 ST中的函数依赖关系 图4.16 TC中的函数依赖关系,关系模式TCS由规范到BCNF后,使原来存在的四个异常问题得到解决。1数据冗余降低。每个教师开设课程的信息只在TC关系中存储一次。2不存在插入异常。

23、对于所开课程尚未有学生选修的教师信息可以直接存储在关系TC中,而对于尚未选修课程的学生可以存储在关系ST中。3不存在删除异常。如果选修某门课程的学生全部毕业,可以只删除关系ST中的相关学生记录,而不影响系关系TC中相应教师开设该门课程的信息。4不存在更新异常。当某个教师开设的某门课程改名后,只需修改关系TC中的一个相应元组即可,不会破坏数据的完整性。如果一个关系数据库中所有关系模式都属于3NF,则已在很大程度上消除了插入异常和删除异常,但由于可能存在主属性对候选键的部分依赖和传递依赖,因此关系模式的分离仍不够彻底。如果一个关系数据库中所有关系模式都属于BCNF,那么在函数依赖的范畴内,已经实现了模式的彻底分解,消除了产生插入异常和删除异常的根源,而且数据冗余也减少到极小程度。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号