反常积分审敛法.ppt

上传人:牧羊曲112 文档编号:6103969 上传时间:2023-09-24 格式:PPT 页数:22 大小:501.50KB
返回 下载 相关 举报
反常积分审敛法.ppt_第1页
第1页 / 共22页
反常积分审敛法.ppt_第2页
第2页 / 共22页
反常积分审敛法.ppt_第3页
第3页 / 共22页
反常积分审敛法.ppt_第4页
第4页 / 共22页
反常积分审敛法.ppt_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《反常积分审敛法.ppt》由会员分享,可在线阅读,更多相关《反常积分审敛法.ppt(22页珍藏版)》请在三一办公上搜索。

1、,二、无界函数反常积分的审敛法,第五节,反常积分,无穷限的反常积分,无界函数的反常积分,一、无穷限反常积分的审敛法,机动 目录 上页 下页 返回 结束,反常积分的审敛法,函数,第五章,一、无穷限反常积分的审敛法,定理1.,若函数,机动 目录 上页 下页 返回 结束,证:,根据极限收敛准则知,存在,定理2.(比较审敛原理),且对充,则,机动 目录 上页 下页 返回 结束,证:不失一般性,因此,单调递增有上界函数,机动 目录 上页 下页 返回 结束,说明:已知,得下列比较审敛法.,极限存在,定理3.(比较审敛法 1),机动 目录 上页 下页 返回 结束,例1.判别反常积分,解:,的敛散性.,机动

2、目录 上页 下页 返回 结束,由比较审敛法 1 可知原积分收敛.,思考题:讨论反常积分,的敛散性.,提示:当 x1 时,利用,可知原积分发散.,定理4.(极限审敛法1),机动 目录 上页 下页 返回 结束,则有:,1)当,2)当,证:,根据极限定义,对取定的,当 x 充,分大时,必有,即,满足,当,机动 目录 上页 下页 返回 结束,可取,必有,即,注意:,此极限的大小刻画了,例2.判别反常积分,的敛散性.,解:,机动 目录 上页 下页 返回 结束,根据极限审敛法 1,该积分收敛.,例3.判别反常积分,的敛散性.,解:,根据极限审敛法 1,该积分发散.,定理5.,机动 目录 上页 下页 返回

3、结束,证:,则,而,定义.设反常积分,机动 目录 上页 下页 返回 结束,则称,绝对收敛;,则称,条件收敛.,例4.判断反常积分,的敛散性.,解:,根据比,较审敛原理知,故由定理5知所,给积分收敛,(绝对收敛).,无界函数的反常积分可转化为无穷限的反常积分.,二、无界函数反常积分的审敛法,机动 目录 上页 下页 返回 结束,由定义,例如,因此无穷限反常积分的审敛法完全可平移到无界函数,的反常积分中来.,定理6.(比较审敛法 2),定理3 目录 上页 下页 返回 结束,瑕点,有,有,利用,有类似定理 3 与定理 4 的如下审敛法.,使对一切充分接近 a 的 x(x a).,定理7.(极限审敛法2

4、),定理4 目录 上页 下页 返回 结束,则有:,1)当,2)当,例5.判别反常积分,解:,利用洛必达法则得,根据极限审敛法2,所给积分发散.,例6.判定椭圆积分,定理4 目录 上页 下页 返回 结束,散性.,解:,由于,的敛,根据极限审敛法 2,椭圆积分收敛.,类似定理5,有下列结论:,机动 目录 上页 下页 返回 结束,例7.判别反常积分,的敛散性.,解:,称为绝对收敛.,故对充分小,从而,据比较审敛法2,所给积分绝对收敛.,则反常积分,三、函数,1.定义,机动 目录 上页 下页 返回 结束,下面证明这个特殊函数在,内收敛.,令,机动 目录 上页 下页 返回 结束,综上所述,2.性质,(1

5、)递推公式,机动 目录 上页 下页 返回 结束,证:,(分部积分),注意到:,(2),机动 目录 上页 下页 返回 结束,证:,(3)余元公式:,(证明略),(4),机动 目录 上页 下页 返回 结束,得应用中常见的积分,这表明左端的积分可用 函数来计算.,例如,内容小结,1.两类反常积分的比较审敛法和极限审敛法.,2.若在同一积分式中出现两类反常积分,习题课 目录 上页 下页 返回 结束,可通过分项,使每一项只含一种类型的反常积分,只有各项都收敛时,才可保证给定的积分收敛.,3.函数的定义及性质.,思考与练习,P263 题1(1),(2),(6),(7),P264 题5(1),(2),作业P263 1(3),(4),(5),(8)2;3,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号