机构的运动分析及动力学.ppt

上传人:小飞机 文档编号:6230662 上传时间:2023-10-07 格式:PPT 页数:62 大小:1.64MB
返回 下载 相关 举报
机构的运动分析及动力学.ppt_第1页
第1页 / 共62页
机构的运动分析及动力学.ppt_第2页
第2页 / 共62页
机构的运动分析及动力学.ppt_第3页
第3页 / 共62页
机构的运动分析及动力学.ppt_第4页
第4页 / 共62页
机构的运动分析及动力学.ppt_第5页
第5页 / 共62页
点击查看更多>>
资源描述

《机构的运动分析及动力学.ppt》由会员分享,可在线阅读,更多相关《机构的运动分析及动力学.ppt(62页珍藏版)》请在三一办公上搜索。

1、机构的运动分析和动力学问题,31 机构的运动分析,3、机构速度分析的瞬心法,32 机构的力分析,33 机械中的摩擦和机械效率,2、用解析法作机构的运动分析,1、机构运动分析目的与方法,31 机构的运动分析,1.位置分析,研究内容:位置分析、速度分析和加速度分析。,确定机构的位置(位形),绘制机构位置图。,确定构件的运动空间,判断是否发生干涉。,确定构件(活塞)行程,找出上下极限位置。,确定点的轨迹(连杆曲线),如鹤式吊。,31 1机构的运动分析目的和方法,运动分析目的:,2.速度分析 通过分析,了解从动件的速度变化规律是否满足 工作要求。如牛头刨,为加速度分析作准备。,3.加速度分析 加速度分

2、析是为确定惯性力作准备。,运动分析方法:图解法简单、直观、精度低、求系列位置时繁琐。,解析法正好与以上相反。,实验法试凑法,配合连杆曲线图册,用于解决 实现预定轨迹问题。,31 机构运动分析的解析法,图解法的缺点:分析结果精度低;,随着计算机应用的普及,解析法得到了广泛的应用。常用的解析法有:复数矢量法、矩阵法、杆组分析法等,作图繁琐、费时,不适用于一个运动周期的分析。,不便于把机构分析与综合问题联系起来。,思路:由机构的几何条件,建立机构的位置方程,然后就位置方程对时间求一阶导数,得速度方程,求二阶导数得到机构的加速度方程。,作者:潘存云教授,一、复数矢量法,1、位置分析将各构件用杆矢量表示

3、,则有:,已知:图示四杆机构的各构件尺寸(位置)和1,求2、3、2、3、2、2。,化成直角坐标形式有:,l2 cos2l3 cos3+l4 cos4l1 cos1(2),大小:方向 2?3?,l2 sin2l3 sin3+l4 sin4l1 sin1(3),(1已知),(2)、(3)平方后相加得:,l22l23+l24+l212 l3 l4cos3 2 l1 l3(cos3 cos1-sin3 sin1)2 l1 l4cos1,整理后得:Asin3+Bcos3+C=0(4),其中:A=2 l1 l3 sin1B=2 l3(l1 cos1-l4)C=l22l23l24l212 l1 l4cos1

4、,解三角方程得:tg(3/2)=Asqrt(A2+B2C2)/(BC)由连续性确定,同理,为了求解2,可将矢量方程写成如下形式:,化成直角坐标形式:l3 cos3l1 cos1+l2 cos2l4(6),(6)、(7)平方后相加得:,l23l21+l22+l242 l1 l2cos1 2 l1 l4(cos1 cos2-sin1 sin2)2 l1 l2cos1,整理后得:Dsin2+Ecos2+F=0(8),其中:D=2 l1 l2 sin1E=2 l2(l1 cos1-l4)F=l21+l22+l24l23-2 l1 l4 cos1,解三角方程得:tg(2/2)=Dsqrt(D2+E2F2

5、)/(EF),l3 sin3l1 sin1+l2 sin20(7),2、速度分析,3 l3 sin(3 2)=1 l1 sin(1 2),3=1 l1 sin(1 2)/l3 sin(3 2),-2 l2 sin(2 3)=1 l1 sin(1 3),2=-1 l1 sin(1 3)/l2sin(23),作者:潘存云教授,3、加速度分析,将(9)式对时间求导得:,上式中只有两个未知量,-32 l3 cos(3 2)-3 l3 sin(3 2)=-12 l1 cos(1 2)-22 l2,3=12 l1 cos(1-2)+22 l2-32 l3 cos(3-2)/l3 sin(3 2),2=12

6、 l1 cos(1-3)+32 l3-22 l2 cos(2-3)/l2 sin(2 3),二、矩阵法,思路:在直角坐标系中建立机构的位置方程,然后将位置方程对时间求一阶导数,得到机构的速度方程。求二阶导数便得到机构加速度方程。,1.位置分析,改写成直角坐标的形式:,已知图示四杆机构的各构件尺寸和1,求:2、3、2、3、2、2、xp、yp、vp、ap。,连杆上P点的坐标为:,2.速度分析,对时间求导得速度方程:,重写位置方程组,将以下位置方程:,写成矩阵形式:,A=1B,对以下P点的位置方程求导:,得P点的速度方程:,3.加速度分析,将(15)式对时间求导得以下矩阵方程:,重写速度方程组,=,

7、A,+1,对速度方程求导:,对P点的速度方程求导:,得以下矩阵方程:,解析法运动分析的关键:正确建立机构的位置方程。至于速度分析和加速度分析只不过是对位置方程作进一步的数学运算而已。本例所采用的分析方法同样适用复杂机构。,速度方程的一般表达式:,其中A机构从动件的位置参数矩阵;,机构从动件的角速度矩阵;,B机构原动件的位置参数矩阵;,1 机构原动件的角速度。,加速度方程的一般表达式:,机构从动件的加角速度矩阵;,A=1B,缺点:是对于每种机构都要作运动学模型的推导,模型的建立比较繁琐。,作者:潘存云教授,三、杆组分析法,原理:将基本杆组的运动分析模型编成通用的子程序,根据机构的组成情况依次调用

8、杆组分析子程序,就能完成整个机构的运动分析。,特点:运动学模型是通用的,适用于任意复杂的平面连杆机构。,作者:潘存云教授,31 平面机构速度分析的瞬心法,机构速度分析的图解法有:速度瞬心法、相对运动法、线图法。瞬心法:适合于简单机构的运动分析。,一、速度瞬心及其求法,绝对瞬心重合点绝对速度为零。,相对瞬心重合点绝对速度不为零。,两个作平面运动构件上速度相同的一对重合点,在某一瞬时两构件相对于该点作相对转动,该点称瞬时速度中心。求法?,1、速度瞬心的定义,特点:该点涉及两个构件。,2、瞬心数目,每两个构件就有一个瞬心 根据排列组合有,1 2 3,若机构中有n个构件,则,Nn(n-1)/2,绝对速

9、度相同,相对速度为零。(重合点),相对回转中心。,3、机构瞬心位置的确定,(1)直接观察法(利用定义)适用于求通过运动副直接相联的两构件瞬心位置。,(2)三心定律,定义:三个彼此作平面运动的构件共有三个瞬心,且它们位于同一条直线上。此法特别适用于两构件不直接相联的场合。,用反证法证明:如右图所示的三个构件组成的一个机构,若P23不与P12、P13共线(同一直线),而在任意一点C,则C点在构件2和构件3上的绝对速度的方向不可能相同,即绝对速度不相等。二只有C点在P12、P13连成的直线上,才能使绝对速度的方向相同。,例:求图121所示铰链四杆机构的瞬心。,解 该机构瞬心数:N1/24(4一1)6

10、转动副中心A、B、C、D各为瞬心P12、P23、P34、P14,由三心定理可知,P13、P12、P23三个瞬心位于同一直线上;P13、P14、P34也应位于同一直线上。因此,P12 P23和P14 P34两直线的交点就是瞬心P13。同理,直线P14 P12和直线P34 P23的交点就是瞬心P24。因为构件1是机架,所以P12、P13、P14是绝对瞬心,而P23、P34、P24是相对瞬心。,作者:潘存云教授,举例:求曲柄滑块机构的速度瞬心。,解:瞬心数为:,1.作瞬心多边形圆,2.直接观察求瞬心,3.三心定律求瞬心,Nn(n-1)/26 n=4,作者:潘存云教授,举例:求图示六杆机构的速度瞬心。

11、,解:瞬心数为:Nn(n-1)/215 n=6,1.作瞬心多边形圆,2.直接观察求瞬心,3.三心定律求瞬心,二、速度瞬心在机构速度分析中的应用,1.求线速度,已知凸轮转速1,求推杆的速度。,解:直接观察求瞬心P13、P23。,求瞬心P12的速度。,V2V P12l(P13P12)1,长度P13P12直接从图上量取。,根据三心定律和公法线 nn求瞬心的位置P12。,作者:潘存云教授,2.求角速度,解:瞬心数为,6个,直接观察能求出,4个,余下的2个用三心定律求出。,求瞬心P24的速度。,VP24l(P24P14)4,4 2(P24P12)/P24P14,a)铰链机构已知构件2的转速2,求构件4的

12、角速度4。,VP24l(P24P12)2,方向:CW,与2相同。,相对瞬心位于两绝对瞬心的同一侧,两构件转向相同,b)高副机构已知构件2的转速2,求构件3的角速度3。,解:用三心定律求出P23。,求瞬心P23的速度:,VP23l(P23P13)3,32(P13P23/P12P23),方向:CCW,与2相反。,VP23l(P23P12)2,相对瞬心位于两绝对瞬心之间,两构件转向相反。,3.求传动比,定义:两构件角速度之比传动比。,3/2 P12P23/P13P23,推广到一般:i/j P1jPij/P1iPij,结论:两构件的角速度之比等于绝对瞬心至相对瞬心的距离之反比。,角速度的方向为:相对瞬

13、心位于两绝对瞬心的同一侧时,两构件转向相同。,相对瞬心位于两绝对瞬心之间时,两构件转向相反。,4.用瞬心法解题步骤,绘制机构运动简图;,求瞬心的位置;,求出相对瞬心的速度;,瞬心法的优缺点:,适合于求简单机构的速度,机构复杂时因 瞬心数急剧增加而求解过程复杂。,有时瞬心点落在纸面外。,仅适于求速度V,使应用有一定局限性。,求构件绝对速度V或角速度。,32 机构的力分析,作用在机械上的力是影响机械运动和动力性能 的主要因素;,是决定构件尺寸和结构形状的重要依据。,作用在机械上的力,力的类型,原动力,生产阻力,重力,摩擦力,介质阻力,惯性力,运动副反力,一、机构力分析的必要性,按作用分为,阻抗力,

14、驱动力,有效阻力,有害阻力,驱动力-驱使机械运动,其方向与力的作用点速 度之间的夹角为锐角,所作功为正功。,阻抗力-阻碍机械运动,其方向与力的作用点速 度之间的夹角为钝角,所作功为负功。,有效(工作)阻力-机械在生产过程中为了改变工作物的外形、位置或状态所受到的阻力,克服了阻力就完成了有效的工作。如车削阻力、起重力等。,有害(工作)阻力-机械运转过程受到的非生产阻力,克服了这类阻力所作的功纯粹是浪费能量。如摩擦力、介质阻力等。,确定运动副中的反力-为进一步研究构件强度、运动副中的摩擦、磨损、机械效率、机械动力性能等作准备。,二.机械力分析的任务和目的,确定机械平衡力(或力偶)-目的是已知生产负

15、荷确定原动机的最小功率;或由原动机的功率来确定所能克服的最大生产阻力。,反力-运动副元素接触处的正压力与摩擦力的合力,平衡力-机械在已知外力作用下,为了使机械按给定的运动规律运动所必需添加的未知外力。,三.机械力分析的方法,机械力分析的理论依据:,静力分析-适用于低速机械,惯性力可忽略不计;,动态静力分析-适用于高速重型机械,惯性力往往比外力要大,不能忽略。,一般情况下,需要对机械做动态静力分析时,可忽略重力和摩擦力,通常可满足工程要求。,作者:潘存云教授,二、构件惯性力的确定,一般的力学方法,惯性力:FI=FI(mi,Jsi,asi,i)惯性力偶:MI=MI(mi,Jsi,asi,i),其中

16、:mi-构件质量;Jsi-绕质心的转动惯量;asi-质心的加速度;i-构件的角加速度。,作者:潘存云教授,构件运动形式不同,惯性力的表达形式不一样。,1)作平面运动的构件:,FI2=-m2 as2,MI2=-Js22,2)作平移运动的构件,FI=-mi asi,3)作平定轴转动的构件,合力:FI 2=FI 2 lh 2=MI2/FI 2,一般情况:FI1=-m1 as1,MI1=-Js11,合力:FI 1=FI 1,lh 1=MI1/FI 1,若质心位于回转中心:MI1=-Js11,三、平面机构的动态静力分析,33 机械中的摩擦和机械效率,概述:摩擦产生源运动副元素之间相对滑动。,摩擦的缺点:

17、,优点:,研究目的:,发热,效率,磨损,强度,精度,寿命,利用摩擦完成有用的工作。,如摩擦传动(皮带、摩擦轮)、,离合器、,制动器(刹车)。,减少不利影响,发挥其优点。,润滑恶化,卡死。,低副产生滑动摩擦力,高副滑动兼滚动摩擦力。,运动副中摩擦的类型:,一、移动副的摩擦,1.移动副中摩擦力的确定,由库仑定律得:F21f N21,G铅垂载荷;,F水平力,,N21法向反力;,F21摩擦力。,33 1 运动副中摩擦,作者:潘存云教授,作者:潘存云教授,F21f N21,当材料确定之后,F21大小取决于法向反力N21,而G一定时,N21 的大小又取决于运动副元素的几何形状。,槽面接触:,F21=f N

18、21+f N”21,平面接触:,N21=N”21=G/(2sin),F21=f N21=f G,=(f/sin)G,=fv G,fv称为当量摩擦系数,作者:潘存云教授,作者:潘存云教授,应用:当需要增大滑动摩擦力时,可将接触面设计成槽面或柱面。如圆形皮带(缝纫机)、三角形皮带、螺栓联接中采用的三角形螺纹。,对于三角带:18,2.移动副中总反力的确定,总反力为法向反力与摩擦力的合成:FR21=N21+F21,tg=F21/N21,摩擦角,,方向:FR21 V12(90+),摩擦锥-以FR21为母线所作圆锥。,结论:移动副中总反力恒切于摩擦锥。,fv3.24 f,=f N21/N21,=f,不论P

19、的方向如何改变,P与R两者始终在同一平面内,作者:潘存云教授,作者:潘存云教授,a)求使滑块沿斜面等速上行所需水平力F,b)求使滑块沿斜面等速下滑所需水平力F,作图,作图,若,则F为阻力;,大小:?方向:,得:F=Gtg(+),若,则F方向相反,成为驱动力。,得:F=Gtg(-),大小:?方向:,力分析实例:,?,作者:潘存云教授,作者:潘存云教授,二、螺旋副中的摩擦,螺纹的牙型有:,螺纹的用途:传递动力或联接,从摩擦的性质可分为:矩形螺纹和三角形螺纹,螺纹的旋向:,1.矩形螺纹螺旋中的摩擦,式中l导程,z螺纹头数,p螺距,螺旋副的摩擦转化为=斜面摩擦。,拧紧时直接引用斜面摩擦的结论有:,假定

20、载荷集中在中径d2 圆柱面内,展开,斜面其升角为:tg,螺纹的拧松螺母在F和G的联合作用下,顺着G等速向下运动。,螺纹的拧紧螺母在F和G的联合作用下,逆着G等速向上运动。,=l/d2,=zp/d2,从端面看,F螺纹拧紧时必须施加在中径处的圆周力,所产生的 拧紧所需力矩M为:,拧松时直接引用斜面摩擦的结论有:,F螺纹拧松时必须施加在中径处的圆周力,所产生 的拧松所需力矩M为:,若,则M为正值,其方向与螺母运动方向相反,是阻力;,若,则M为负值,方向相反,其方向与预先假定 的方向相反,而与螺母运动方向相同,成为 放松螺母所需外加的驱动力矩。,作者:潘存云教授,2.三角形螺纹螺旋中的摩擦,矩形螺纹忽

21、略升角影响时,N近似垂直向上,比较可得:NcosGN,引入当量摩擦系数:fv=f/cos,三角形螺纹,NcosG,,牙形半角,NG,当量摩擦角:v arctg fv,NN/cos,作者:潘存云教授,作者:潘存云教授,拧紧:,拧松:,可直接引用矩形螺纹的结论:,三、转动副中的摩擦,1.轴径摩擦,直接引用前面的结论有:,产生的摩擦力矩为:,轴,轴径,轴承,方向:与12相反。,=G,=f kG,=fv G,Mf=F21 r,=fv r G,=f N21 r,F21=f N21,作者:潘存云教授,作者:潘存云教授,当G的方向改变时,,FR21的方向也跟着改变,,以作圆称为摩擦圆,摩擦圆半径。且R21恒

22、切于摩擦圆。,分析:由=fv r 知,,r,Mf,对减小摩擦不利。,但不变。,作者:潘存云教授,作者:潘存云教授,运动副总反力判定准则,1.由力平衡条件,初步确定总反力方向(受拉或压)。,2.对于转动副有:FR21恒切于摩擦圆。,3.对于转动副有:Mf 的方向与12相反,对于移动副有:FR21恒切于摩擦锥,对于移动副有:FR21 V12(90+),例1:图示机构中,已知驱动力F和阻力Mr和摩擦圆半径,画出各运动副总反力的作用线。,作者:潘存云教授,取环形面积:ds2d,2.轴端摩擦,在G的作用下产生摩擦力矩Mf,摩擦力为:dF=f dN,总摩擦力矩:,摩擦力矩:dMf=dF,dN=p ds,设

23、ds上的压强为p,正压力为:,=f dN,=f p ds,=f p ds,作者:潘存云教授,作者:潘存云教授,3 3 2 考虑摩擦的机构静力分析实例,例1:图示机构中,已知构件尺寸、材料、运动副半径,水平阻力Fr,求平衡力Fb的大小。,大小:?方向:,解:1)根据已知条件求作摩擦圆,2)求作二力杆运动副反力的作用线,3)列出力平衡向量方程,大小:?方向:,从图上量得:FbFr(ad/ab),选比例尺作图,受压,作者:潘存云教授,作者:潘存云教授,例2:图示四铰链机构中,已知工作阻力G、运动副 的材料和半径r,求所需驱动力矩Md。,FR23=G(cb/ab),大小:?方向:,从图上量得:MdG(

24、cb/ab)l,解:1)根据已知条件求作摩擦圆,受拉,2)求作二力杆反力的作用线,3)列出力平衡向量方程,选比例尺作图,作者:潘存云教授,作者:潘存云教授,力分析解题步骤小结:,从二力杆入手,初步判断杆2受拉。,由、增大或变小来判断各构件的相对角速度。,依据总反力判定准则得出FR12和FR32切于摩擦圆的 内公切线。,由力偶平衡条件确定构件1的总反力。,由三力平衡条件(交于一点)得出构件3的总反力。,作者:潘存云教授,1、机械运转时的功能关系,33 3 机械效率与机械自锁,1)动能方程,机械运转时,所有作用在机械上的力都要做功,由能量守恒定律知:,2)机械的运转,WdWrWfWG=E00,输入

25、功大于有害功之和。,WdWrWfWG=EE0,a)启动阶段 速度0,动能0E,一、机械效率,作者:潘存云教授,b)稳定运转阶段,在一个循环内有:WdWrWf=EE00,匀速稳定阶段 常数,任意时刻都有:,变速稳定阶段 在m上下 周期波动,(t)=(t+Tp),WG=0,E=0,Wd=Wr+Wf,WdWrWf=EE00,Wd=WrWf,c)停车阶段 0,WdWrWfWG=EE00,输入功小于有用功与损失功之和。,输入功总是等于有用功与损失功之和。,2、机械的效率,机械在稳定运转阶段恒有:,比值Wr/Wd反映了驱动功的有效利用程度,称为机械效率。,Wr/Wd,用功率表示:Nr/Nd,分析:总是小于

26、 1,当Wf 增加时将导致下降。,设计机械时,尽量减少摩擦损失,措施有:,Wd=Wr+Wf,b)考虑润滑,c)合理选材,1Wf/Wd,(WdWf)/Wd,(NdNf)/Nd,1Nf/Nd,a)用滚动代替滑动,作者:潘存云教授,复杂机械的机械效率计算方法:,1.)串联:,2.)并联,总效率不仅与各机器的效率i有关,而且与传递的功率Ni有关。,设各机器中效率最高最低者分别为max和min 则有:,min,max,作者:潘存云教授,3.)混联,先分别计算,合成后按串联或并联计算。,并联计算,串联计算,串联计算,作者:潘存云教授,无论F多大,滑块在P的作用下不可能运动,发生自锁。,当驱动力的作用线落在

27、摩擦锥内时,则机械发生自锁。,法向分力:Fn=Fcos,二、机械的自锁,水平分力:Ft=Fsin,正压力:N21=Fn,最大摩擦力:Fmax=f N21,当时,恒有:,工程意义:设计新机械时,应避免在运动方向出现自锁,而有些机械要利用自锁进行工作(如千斤顶等)。,分析平面移动副在驱动力P作用的运动情况:,Ft Fmax,=Fn tg,=Fntg,1、含移动副的机械,作者:潘存云教授,当回转运动副仅受单力F作用时:,最大摩擦力矩为:Mf=FR,当力F的作用线穿过摩擦圆(a)时,发生自锁。,F,M=F a,产生的力矩为:,2、含转动副的机械,作者:潘存云教授,应用实例:图示钻夹具在F力夹紧,去掉F

28、后要求不能松开,即反行程具有自锁性。分析其几何条件。,由此可求出夹具各参数的几何条件为:,在直角ABC中有:,在直角OEA中有:,反行程具有自锁条件为:,s-s1,esin()(Dsin)/2,s=OE,s1=AC,分析:若总反力FR23穿过摩擦圆-发生自锁,=(Dsin)/2,=esin(),当机械出现自锁时,无论驱动力多大,都不能运动,从能量的观点来看,就是:,-由此判断是否自锁及出现自锁条件。,说明:0时,机械已不能动,外力根本不做功,已失去一般效率的意义。仅表明机械自锁的程度。且越小表明自锁越可靠。,上式意味着只有当生产阻力反向而称为驱动力之后,才能使机械运动。上式可用于判断是否自锁及出现自锁条件。,即:0,G0/G 0,G0,驱动力做的功永远由其引起的摩擦力所做的功,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号