土力学地基五单元土压力、地基承载力和土坡稳定.ppt

上传人:牧羊曲112 文档编号:6258709 上传时间:2023-10-11 格式:PPT 页数:130 大小:3.01MB
返回 下载 相关 举报
土力学地基五单元土压力、地基承载力和土坡稳定.ppt_第1页
第1页 / 共130页
土力学地基五单元土压力、地基承载力和土坡稳定.ppt_第2页
第2页 / 共130页
土力学地基五单元土压力、地基承载力和土坡稳定.ppt_第3页
第3页 / 共130页
土力学地基五单元土压力、地基承载力和土坡稳定.ppt_第4页
第4页 / 共130页
土力学地基五单元土压力、地基承载力和土坡稳定.ppt_第5页
第5页 / 共130页
点击查看更多>>
资源描述

《土力学地基五单元土压力、地基承载力和土坡稳定.ppt》由会员分享,可在线阅读,更多相关《土力学地基五单元土压力、地基承载力和土坡稳定.ppt(130页珍藏版)》请在三一办公上搜索。

1、土力学与地基基础工程,主 讲周 先 明,土力学与地基基础工程,第五章 土压力、地基承载力、土坡稳定,第五章 土压力、地基承载力、土坡稳定,5.1 概述5.2 朗金土压力理论5.3 库仑土压力理论5.4 挡土墙设计5.5 新型挡土结构5.6 地基破坏型式及地基承载力5.7 地基的极限承载力5.8 土坡和地基稳定分析,土力学与地基基础工程,什么是挡土墙?挡土墙的应用挡土墙压力的状态1.静止2.主动土压力3.被动土压力,土压力理论最初分别由CA库伦(Coulomb)和.朗肯(Rankine)提出,其目的主要解决与工程建设有关问题。l773年,法国的C.A.库伦(Coulomb)根据试验创立了著名的砂

2、土抗剪强度公式,提出了计算挡土墙土压力计算的滑楔理论。,Charles Augustin de Coulomb(1736-1806),土压力理论,William John Maquorn Rankine(1820-1872),90余年后,1869年,英国的.朗肯(Rankine)又从另一途径提出了挡土墙土压力理论。这些古典的理论和方法,直到今天。仍不失其理论和实用的价值,在工程设计中广泛应用。,土压力理论,预应力锚杆处治,锚索桩板墙处治,抗滑桩处治,挖方最高边坡50米护面墙、挂网锚喷砼处治,重力式挡土墙处治,挡土墙是指为保持墙的两侧地面有一定高差而设计的构筑物,以防止土体坍塌。在房屋建筑、水利

3、、铁路以及桥梁工程中得到广泛应用。,挡土墙的类型(a)支撑土坡的挡土墙(b)堤岸挡土墙(c)地下室侧墙(d)拱桥桥台,5.1 土压力概述,5.1 土压力概述,土压力挡土墙后的填土因自重或外荷载作用对墙背产生的侧压力,E,填土面,码头,桥台,E,E,E,挡土墙目的支挡墙后土体,防止产生坍滑,墙顶,墙底,墙趾,墙面,墙背,墙锺,一、土压力类型,被动土压力,主动土压力,静止土压力,土压力,1.静止土压力,挡土墙在压力作用下不发生任何变形和位移,墙后填土处于弹性平衡状态时,作用在挡土墙背的土压力,Eo,2.主动土压力,在土压力作用下,挡土墙离开土体向前位移至一定数值,墙后土体达到主动极限平衡状态时,作

4、用在墙背的土压力,Ea,3.被动土压力,Ep,在外力作用下,挡土墙推挤土体向后位移至一定数值,墙后土体达到被动极限平衡状态时,作用在墙上的土压力,4.三种土压力之间的关系,-,+,对同一挡土墙,在填土的物理力学性质相同的条件下有以下规律:,1.Ea Eo Ep2.p a,二、静止土压力计算,K0h,z,K0z,h/3,静止土压力系数,静止土压力强度,静止土压力分布,土压力作用点,三角形分布,作用点距墙底h/3,5.2 朗金土压力理论,一、朗金土压力基本理论,1.挡土墙背垂直、光滑 2.填土表面水平 3.墙体为刚性体,z=z,xK0z,paKaz,ppKpz,理论出发点:半无限大土体中一点的极限

5、平衡状态,pa,pp,土体处于弹性平衡状态,主动极限平衡状态,被动极限平衡状态,主动朗金状态,被动朗金状态,处于主动朗金状态,1方向竖直,剪切破坏面与竖直面夹角为45o-/2,处于被动朗金状态,3方向竖直,剪切破坏面与竖直面夹角为45o/2,二、主动土压力,挡土墙在土压力作用下,产生离开土体的位移,竖向应力保持不变,水平应力逐渐减小,位移增大到a,墙后土体处于朗金主动状态时,墙后土体出现一组滑裂面,它与大主应力面夹角45o/2,水平应力降低到最低极限值,z(1),pa(3),极限平衡条件,朗金主动土压力系数,朗金主动土压力强度,讨论:,当c=0,无粘性土,朗金主动土压力强度,1.无粘性土主动土

6、压力强度与z成正比,沿墙高呈三角形分布2.合力大小为分布图形的面积,即三角形面积3.合力作用点在三角形形心,即作用在离墙底h/3处,当c0,粘性土,1.土的自重引起的土压力zKa2.粘聚力c引起的负侧压力2cKa,说明:负侧压力是一种拉力,由于土与结构之间抗拉强度很低,受拉极易开裂,在计算中不考虑,负侧压力深度为临界深度z0,1.粘性土主动土压力强度存在负侧压力区(计算中不考虑)2.合力大小为分布图形的面积(不计负侧压力部分)3.合力作用点在三角形形心,即作用在离墙底(h-z0)/3处,三、被动土压力,极限平衡条件,朗金被动土压力系数,朗金被动土压力强度,z(3),pp(1),挡土墙在外力作用

7、下,挤压墙背后土体,产生位移,竖向应力保持不变,水平应力逐渐增大,位移增大到p,墙后土体处于朗金被动状态时,墙后土体出现一组滑裂面,它与小主应力面夹角45o/2,水平应力增大到最大极限值,讨论:,当c=0,无粘性土,朗金被动土压力强度,1.无粘性土被动土压力强度与z成正比,沿墙高呈三角形分布2.合力大小为分布图形的面积,即三角形面积3.合力作用点在三角形形心,即作用在离墙底h/3处,当c0,粘性土,1.土的自重引起的土压力zKp2.粘聚力c引起的侧压力2cKp,说明:侧压力是一种正压力,在计算中应考虑,1.粘性土被动土压力强度不存在负侧压力区2.合力大小为分布图形的面积,即梯形分布图形面积3.

8、合力作用点在梯形形心,土压力合力,四、例题分析,【例】有一挡土墙,高6米,墙背直立、光滑,墙后填土面水平。填土为粘性土,其重度、内摩擦角、粘聚力如下图所示,求主动土压力及其作用点,并绘出主动土压力分布图,【解答】,主动土压力系数,墙底处土压力强度,临界深度,主动土压力,主动土压力作用点距墙底的距离,=17kN/m3c=8kPa=20o,五、几种常见情况下土压力计算,1.填土表面有均布荷载(以无粘性土为例),zq,将均布荷载换算成作用在地面上的当量土重,填土表面深度z处竖向应力为(q+z),相应主动土压力强度,A点土压力强度,B点土压力强度,,,五、几种常见情况下土压力计算,1.填土表面有均布荷

9、载(以无粘性土为例),若填土为粘性土,c0,临界深度z0,z0 0说明存在负侧压力区,计算中应不考虑负压力区土压力,z0 0说明不存在负侧压力区,按三角形或梯形分布计算,将均布荷载换算成作用在地面上的当量土重,2.成层填土情况(无粘性土),1,1,2,2,3,3,paA,paB上,paB下,paC下,paC上,paD,挡土墙后有几层不同类的土层,将上层土视为作用在下层土上的均布超载,换算成下层土的性质指标的当量土层,按下层土的指标计算,A点,B点上界面,B点下界面,C点上界面,C点下界面,D点,说明:合力大小为分布图形的面积,作用点位于分布图形的形心处,2.成层填土情况(粘性土),c1,1,1

10、,c2,2,2,c3,3,3,paA,paB上,paB下,paC下,paC上,paD,A点,B点上界面,B点下界面,C点上界面,C点下界面,D点,3.墙后填土存在地下水(以无粘性土为例),挡土墙后有地下水时,作用在墙背上的土侧压力有土压力和水压力两部分,可分作两层计算,一般假设地下水位上下土层的抗剪强度指标相同,地下水位以下土层用浮重度计算,A点,B点,C点,土压力强度:,水压力强度:,B点,C点,作用在墙背的总压力为土压力和水压力之和,作用点在合力分布图形的形心处,六、例题分析,【例1】挡土墙高5m,墙背直立、光滑,墙后填土面水平,共分两层。各层的物理力学性质指标如图所示,试求主动土压力Ea

11、,并绘出土压力分布图。,【解答】,A点,B点上界面,B点下界面,C点,主动土压力合力,10.4kPa,4.2kPa,36.6kPa,1=17kN/m3c1=01=34o,2=19kN/m3c2=10kPa2=16o,六、例题分析,【例2】垂直光滑挡土墙,墙高5m,墙后填土表面水平,填土为砂,地下水位在填土表面以下2m,地下水位以上填土,地下水位以下填土,墙后填土表面有超载。试求主动土压力Ea及水压力,并绘出压力分布图。,Ka10.27,Ka20.295,【课堂练习】挡土墙高5m,墙背直立、光滑,墙后填土面水平,共分两层。各层的物理力学性质指标如图所示,试求主动土压力Ea,并绘出土压力分布图。,

12、朗金土压力基本理论,1.挡土墙背垂直、光滑 2.填土表面水平 3.墙体为刚性体,z=z,xK0z,paKaz,ppKpz,理论出发点:半无限大土体中一点的极限平衡状态,pa,pp,土体处于弹性平衡状态,主动极限平衡状态,被动极限平衡状态,主动朗金状态,被动朗金状态,5.3 库仑土压力理论,一、库仑土压力理论,1.墙后的填土为均匀的各向同性的理想散粒体 2.土体滑动破坏面为通过墙踵的平面 3.墙背与滑裂面间的滑动土楔为一刚性体,本身无变形,理论出发点:楔形土体的静力平衡条件,二、库仑主动土压力,墙向前移动或转动时,墙后土体沿某一破坏面BC破坏,土楔ABC处于主动极限平衡状态,土楔受力情况:,3.

13、墙背对土楔的反力E,大小未知,方向与墙背法线夹角为,1.土楔自重G=ABC,方向竖直向下,2.破坏面为BC上的反力R,大小未知,方向与破坏面法线夹角为,土楔在三力作用下,静力平衡,滑裂面是任意给定的,不同滑裂面得到一系列土压力E,E是q的函数,E的最大值Emax,即为墙背的主动土压力Ea,所对应的滑动面即是最危险滑动面,库仑主动土压力系数,查表确定,土对挡土墙背的摩擦角,根据墙背光滑,排水情况查表确定,主动土压力强度,主动土压力强度沿墙高呈三角形分布,合力作用点在离墙底h/3处,方向与墙背法线成,与水平面成(),说明:土压力强度分布图只代表强度大小,不代表作用方向,主动土压力,三、库仑被动土压

14、力,C,A,B,墙向填土移动或转动时,墙后土体沿某一破坏面BC破坏,土楔ABC处于被动极限平衡状态,土楔受力情况:,3.墙背对土楔的反力E,大小未知,方向与墙背法线夹角为,1.土楔自重G=ABC,方向竖直向下,2.破坏面为BC上的反力R,大小未知,方向与破坏面法线夹角为,被动土压力强度,被动土压力强度沿墙高呈三角形分布,合力作用点在离墙底h/3处,方向与墙背法线成,与水平面成(-),Ep,说明:土压力强度分布图只代表强度大小,不代表作用方向,被动土压力,库仑被动土压力系数,查表确定,三、例题分析,【例】挡土墙高4.5m,墙背俯斜,填土为砂土,=17.5kN/m3,=30o,填土坡角、填土与墙背

15、摩擦角等指标如图所示,试按库仑理论求主动土压力Ea及作用点,【解答】,由=10o,=15o,=30o,=20o,土压力作用点在距墙底h/3=1.5m处,5.4 土压力计算方法讨论,朗肯土压力理论基于土单元体的应力极限平衡条件建立的,采用墙背竖直、光滑、填土表面水平的假定,与实际情况存在误差,主动土压力偏大,被动土压力偏小,库仑土压力理论基于滑动块体的静力平衡条件建立的,采用破坏面为平面的假定,与实际情况存在一定差距(尤其是当墙背与填土间摩擦角较大时),墙背与填土之间的摩擦角与墙背粗糙度、填土性质、填土表面倾斜程度、墙后排水条件等因素有关。,为保证挡土墙的安全,对土的抗剪强度指标予以折减。,若墙

16、后填土是粘性土,采用库仑土压力理论可采用等代内摩擦角或采用广义库仑理论,5.5 挡土墙设计,一、挡土墙类型,1.重力式挡土墙,块石、砖或素混凝土砌筑而成,靠自身重力维持稳定,墙体抗拉、抗剪强度都较低。墙身截面尺寸大,一般用于墙高H8米的低挡土墙。,E1E2E3,5.5 挡土墙设计,一、挡土墙类型,2.悬臂式挡土墙,钢筋混凝土建造,立臂、墙趾悬臂和墙踵悬臂三块悬臂板组成,靠墙踵悬臂上的土重维持稳定,墙体内拉应力由钢筋承担,墙身截面尺寸小,充分利用材料特性,市政工程中常用,适用于墙高H5米。,3.扶壁式挡土墙,针对悬臂式挡土墙立臂受力后弯矩和挠度过大缺点,增设扶壁,扶壁间距(0.30.6)h,墙体

17、稳定靠扶壁间填土重维持,适用于墙高H10米。,4.锚定板式与锚杆式挡土墙,预制钢筋混凝土面板、立柱、钢拉杆和埋在土中锚定板组成,稳定由拉杆和锚定板来维持,二、挡土墙计算,1.稳定性验算:抗倾覆稳定和抗滑稳定,2.地基承载力验算,3.墙身强度验算,抗倾覆稳定验算,d,抗倾覆稳定条件:,挡土墙在土压力作用下可能绕墙趾O点向外倾覆,抗倾覆稳定验算,d,抗倾覆稳定条件:,挡土墙在土压力作用下可能绕墙趾O点向外倾覆,不满足时应采取的措施:,扩大墙断面尺寸,增加墙身重量墙趾伸长修改墙背形状在挡土墙垂直墙背上做卸荷台,抗滑稳定验算,抗滑稳定条件:,挡土墙在土压力作用下可能沿基础底面发生滑动,m为基底摩擦系数

18、,根据土的类别查表得到,抗滑稳定验算,抗滑稳定条件:,挡土墙在土压力作用下可能沿基础底面发生滑动,不满足时应采取的措施:,扩大墙断面尺寸,增加墙身重量挡土墙底面作砂、石垫层挡土墙底作逆坡在墙趾处加阻滑短桩或在墙踵后加拖板,【课堂练习】挡土墙高5m,墙背直立、光滑,墙后填土面水平,共分两层。各层的物理力学性质指标如图所示,试求主动土压力Ea,并绘出土压力分布图。,抗倾覆稳定验算,抗滑稳定验算,【例1】一挡土墙(重度22KN/m3)墙高5m,顶宽2m,底宽3m,墙面倾斜,墙背垂直光滑,填土表面水平,填土为砂,地下水位在填土表面以下2m,地下水位以上填土,地下水位以下填土,墙后填土表面有超载。墙底摩

19、擦系数为0.64。试验算挡土墙抗滑及抗倾覆安全系数是否满足要求。,Ka10.27,Ka20.295,h=5m,1=17kN/m3=35o,2=20kN/m3=33o,h1=2m,h2=3m,A,B,C,2m,3m,【例1】一挡土墙(重度22KN/m3)墙高5m,顶宽2m,底宽3m,墙底摩擦系数为0.64。试验算挡土墙抗滑及抗倾覆安全系数是否满足要求。,1=17kN/m3=35o,2=20kN/m3=33o,三、重力式挡土墙的体型与构造,1.墙背倾斜形式,重力式挡土墙按墙背倾斜方向分为仰斜、直立和俯斜三种形式,三种形式应根据使用要求、地形和施工情况综合确定,E1E2E3,2.挡土墙截面尺寸,砌石

20、挡土墙顶宽不小于0.5m,混凝土墙可缩小为0.2m0.4m,重力式挡土墙基础底宽约为墙高的1/21/3,为了增加挡土墙的抗滑稳定性,将基底做成逆坡,当墙高较大,基底压力超过地基承载力时,可加设墙趾台阶,挡土墙基底埋深一般应不小于0.5m,3.墙后排水措施,挡土墙后填土由于雨水入渗,抗剪强度降低,土压力增大,同时产生水压力,对挡土墙稳定不利,因此挡土墙应设置很好的排水措施,增加其稳定性,墙后填土宜选择透水性较强的填料,例如砂土、砾石、碎石等,若采用粘土,应混入一定量的块石,增大透水性和抗剪强度,墙后填土应分层夯实,4.填土质量要求,四、挡土墙的设计步骤,1.初步拟定墙身断面尺寸,2.计算土应力、

21、水压力、基底应力,3.墙身材料强度验算,4.地基稳定性验算,5.挡土墙抗倾覆、抗滑移验算,6.变形验算,五、例题分析,【例2】设计一浆砌块石挡土墙(重度23KN/m3),墙高5.5m,墙背垂直光滑,填土表面水平,填土为砂土,=18kN/m3,=35o,墙底摩擦系数为0.6,墙底地基承载力为200KPa。试设计挡土墙的断面尺寸,使之满足抗倾覆、抗滑移稳定要求。,5.6 新型挡土结构,一、锚定板挡土结构,预制钢筋混凝土面板、立柱、钢拉杆和埋在土中锚定板组成,稳定由拉杆和锚定板来维持,二、加筋土挡土结构,预制钢筋混凝土面板、土工合成材料制成拉筋承受土体中拉力,土工合成材料,是一种新型的岩土工程材料,

22、它以人工合成的聚合物,如塑料、化纤、合成橡胶等为原料,制成各种类型的产品,置于土体内部、表面或各种土体之间,发挥加强或保护土体的作用。土工合成材料可分为土工织物、土工膜、特种土工合成材料和复合型土工合成材料等类型。特种土工合成材料包括:土工格栅、土工垫、土工格室、土工模袋、土工泡沫塑料等;复合型土工合成材料是由土工织物、土工膜、特种土工合成材料复合而成,如复合土工膜、土工复合排水材料等。目前土工合成材料已广泛应用于水利、水电、公路、铁路、建筑、海港、军工等工程领域。,包裹式加筋土挡墙,采用土工布或外层为土工网格内层为土工布双层结合,在土内满铺,每铺一层在其上填土压实,将外端部土工布或双层结合层

23、卷回一定长度,然后再在其上铺放一层土工布或结合层,每层填土厚0.30.5 m,按前法填土、压实,逐层增高,直至达到要求的高度,填筑后,外侧设置壁面,为了保护土工合成材料和美化外观,面板可与加筋土体以一定形式连接或自立保持稳定,甚至可用植被的方式。,三、桩撑挡土结构,采用桩基础,打入地基一定深度,形成板桩墙,用做挡土结构,基坑工程中应用较广,5.7 地基破坏型式及地基承载力,地基承载力概念地基变形三阶段地基的破坏型式地基承载力,一、地基承载力概念,1.变形要求,建筑物基础在荷载作用下产生最大沉降量或沉降差,应该在该建筑物所允许的范围内,2.稳定要求,建筑物的基底压力,应该在地基所允许的承载能力之

24、内,地基承载力:地基土单位面积承受荷载的能力,二、地基变形的三个阶段,a.线性变形阶段(压密阶段、线弹性变形阶段),oa段,荷载小,主要产生压缩变形,荷载与沉降关系接近于直线,土中f,地基处于弹性平衡状态,二、地基变形的三个阶段,b.弹塑性变形阶段(剪切阶段、局部剪切阶段),ab段,荷载增加,荷载与沉降关系呈曲线,地基中局部产生剪切破坏,出现塑性变形区,二、地基变形的三个阶段,c.破坏阶段(整体剪切破坏阶段),bc段,塑性区扩大,发展成连续滑动面,荷载增加,沉降急剧变化,地基开始出现剪切破坏(即弹性变形阶段转变为弹塑性变形阶段)时,地基所承受的基底压力称为临塑荷载pcr,地基濒临破坏(即弹塑性

25、变形阶段转变为破坏阶段)时,地基所承受的基底压力称为极限荷载pu,三、地基的破坏形式,1.整体剪切破坏,a.p-s曲线上有两个明显的转折点,可区分地基变形的三个阶段,b.地基内产生塑性变形区,随着荷载增加塑性变形区发展成连续的滑动面,c.荷载达到极限荷载后,基础急剧下沉,并可能向一侧倾斜,基础两侧地面明显隆起,坚硬的粘土、密砂地基,2.局部剪切破坏,a.p-s曲线转折点不明显,没有明显的直线段,b.塑性变形区不延伸到地面,限制在地基内部某一区域内,c.荷载达到极限荷载后,基础两侧地面微微隆起,较软的粘土或较松散砂土地基,3.冲剪破坏,b.地基不出现明显连续滑动面,c.荷载达到极限荷载后,基础两

26、侧地面不隆起,而是下陷,a.p-s曲线没有明显的转折点,软粘土或松砂地基,整体剪切破坏,地基开始出现剪切破坏(即弹性变形阶段转变为弹塑性变形阶段)时,地基所承受的基底压力称为临塑荷载pcr地基濒临破坏(即弹塑性变形阶段转变为破坏阶段)时,地基所承受的基底压力称为极限荷载pu,四、地基承载力,1、塑性区的发展范围,根据弹性理论,地基中任意点由条形均布压力所引起的附加大、小主应力,四、地基承载力,1、塑性区的发展范围,假定在极限平衡区土的静止侧压力系数K0=1,M点土的自重应力所引起的大小主应力均为 0d+z,四、地基承载力,1、塑性区的发展范围,M点达到极限平衡状态,大、小主应力满足极限平衡条件

27、,塑性区边界方程,塑性区最大深度zmax,2、临塑荷载pcr和界限荷载,当zmax0,地基所能承受的基底附加压力为临塑荷载,塑性区开展深度在某一范围内所对应的荷载为界限荷载,中心荷载,偏心荷载,注意:,(1)计算公式适用于条形基础,若近似地用于矩形、圆形基础,结果偏于安全,(2)计算土中由自重产生的主应力时,假定土的侧压力系数为1,与土的实际情况不符,但可使计算公式简化,(3)在计算临界荷载时,土中已经出现塑性区,但土中应力是按弹性理论计算的,理论上相互矛盾,所产生的误差随着塑性区范围的扩大而扩大,3、例题分析,【例】某条基,底宽b=1.5m,埋深d=2m,地基土的重度19kN/m3,饱和土的

28、重度sat21kN/m3,抗剪强度指标为=20,c=20kPa,求(1)该地基承载力p1/4,(2)若地下水位上升至地表下1.5m,承载力有何变化。,【解答】,(1),(2)地下水位上升时,地下水位以下土的重度用有效重度,说明:当地下水位上升时,地基的承载力将降低,5.8 地基的极限承载力,地基达到完全剪切破坏、丧失整体稳定时的临界荷载,5.8 地基的极限承载力,一、普朗德尔极限承载力理论,1920年,普朗特尔根据塑性理论,在研究刚性物体压入均匀、各向同性、较软的无重量介质时,导出达到破坏时的滑动面形状及极限承载力公式,假定:一个底面光滑的条形基础放在无重量的地基表面上,在均布荷载下,地基发生

29、整体剪切破坏,将无限长,底面光滑的荷载板置于无质量的土(0)的表面上,荷载板下土体处于塑性平衡状态时,塑性区分成五个区,区:主动朗肯区,1竖直向,破裂面与水平面成45o/2,区:普朗特尔区,边界是对数螺线,区:被动朗肯区,1水平向,破裂面与水平面成45o/2,普朗特尔理论的极限承载力理论解,承载力系数,当基础有埋深d 时,二、太沙基极限承载力理论,底面粗糙,基底与土之间有较大的摩擦力,能阻止基底土发生剪切位移,基底以下土不会发生破坏,处于弹性平衡状态。,区:弹性压密区(弹性核),区:普朗特尔区,边界是对数螺线,区:被动朗肯区,1水平向,破裂面与水平面成45o/2,太沙基理论的极限承载力理论解:

30、,适用于条形基础整体剪切破坏情况,太沙基理论的极限承载力理论解:,适用于条形基础整体剪切破坏情况,方形基础,局部剪切破坏时地基极限承载力:,Nr、Nq、Nc为局部剪切破坏时承载力系数,对于方形和圆形基础,太沙基提出采用经验系数修正后的公式,圆形基础,三、汉森极限承载力理论,对于均质地基、基础底面完全光滑,受中心倾斜荷载作用,汉森公式,Sr、Sq、Sc 基础的形状系数ir、iq、ic 荷载倾斜系数dr、dq、dc 深度修正系数gr、gq、gc 地面倾斜系数br、bq、bc 基底倾斜系数Nr、Nq、Nc 承载力系数,说明:相关系数均可以有相关公式进行计算,四、地基承载力的安全度(23)表6.5,五

31、、影响地基承载力的因素,1、基础宽度及埋深,2、地基土的抗剪强度指标,3、地下水位,【例】某条基,底宽b=2m,埋深d=1m,地基土为粉质粘土,重度18.4kN/m3,饱和土的重度sat20kN/m3,抗剪强度指标为=20,c=10kPa,地下水位较深。试问:(1)该地基的极限荷载与承载力(K=2.5)(2)若加大基础埋深为d=1.5m,地基承载力有何变化(3)若加大基础宽度为b=3m,地基承载力有何变化(4)若地下水位上升至基础底面,地基承载力有何变化(5)若地基土=30,c=10kPa,求地基承载力,六、例题分析,5.9 土坡稳定分析,无粘性土土坡稳定分析粘性土土坡稳定分析土坡稳定分析中有

32、关问题,学习要求:掌握土坡滑动失稳的机理,砂土土坡、粘土土坡的整体稳定分析方法和成层土土坡稳定分析条分法。,一、土坡稳定概述,由于地质作用而自然形成的土坡,在天然土体中开挖或填筑而成的土坡,山坡、江河湖海岸坡,基坑、基槽、路基、堤坝,一、土坡稳定概述,土坡失稳含义:填方或挖方土坡由于坡角过陡、坡顶荷重过大、振动以及地下水自坡面溢出等因素导致土坡滑动、丧失稳定土坡失稳原因:1、外界力的作用破坏了土体内原来的应力平衡状态,土坡内剪应力增加2、土的抗剪强度由于受到外界各种因素的影响而降低,促使土坡失稳破坏。,1.土坡坡度:土坡坡度有两种表示方法:一种以高度与水平尺度之比来表示,一种以坡角表示,坡角越

33、小土坡越稳定,但不经济;2.土坡高度:H越小,土坡越稳定;3.土的性质:其性质越好,土坡越稳定;4.气象条件:晴朗干燥土的强度大,稳定性好;5.地下水的渗透:土坡中存在与滑动方向渗透力,不利;6.强烈地震:在地震区遇强烈地震,会使土的强度降低,且地震力或使土体产生孔隙水压力,则对土坡稳定性不利。,影响土坡稳定的因素,稳定分析方法:采用极限平衡理论,假定滑动面形状,用库仑定律,计算稳定安全系数K,坡面,坡肩,基本假设 根据实际观测,由均质砂性土构成的土坡,破坏时滑动面大多近似于平面,成层的非均质的砂类土构成的土坡,破坏时的滑动面也往往近于一个平面,因此在分析砂性土的土坡稳定时,一般均假定滑动面是

34、平面。,二、无粘性土坡稳定分析,简单土坡是指土坡的坡度不变,顶面和底面都是水平的,且土质均匀,无地下水。,二、无粘性土坡稳定分析,二、无粘性土坡稳定分析,均质的无粘性土土坡,在干燥或完全浸水条件下,土粒间无粘结力,只要位于坡面上的土单元体能够保持稳定,则整个坡面就是稳定的,单元体稳定,TT,土坡整体稳定,T,稳定条件:TT,砂土的内摩擦角,抗滑力与滑动力的比值,稳定性系数,取1.11.5,自然休止角(安息角),砂性土坡所形成的最大坡角就是砂土的内摩擦角根据这一原理,工程上可以通过堆砂锥体法确定砂土内摩擦角,【例】某砂土场地需开挖基坑,已知砂土的自然休止角为32。求:1、放坡时的极限坡角;2、若

35、取安全系数为1.3,稳定坡角为多少;3、若取坡角为23,稳定安全系数为多少。,例题分析,均质粘性土土坡在失稳破坏时,其滑动面常常是一曲面,通常近似于圆柱面,在横断面上则呈现圆弧形。实际土坡在滑动时形成的滑动面与坡角b、地基土强度以及土层硬层的位置等有关,一般可形成如下三种形式:1.坡脚圆(a);2.坡面圆(b);3.中点圆(c),三、粘性土土坡稳定分析,三、粘性土土坡稳定分析,1、瑞典圆弧滑动法2、条分法3、泰勒图表法,三、粘性土土坡稳定分析,1、瑞典圆弧滑动法,假定滑动面为圆柱面,截面为圆弧,利用土体极限平衡条件下的受力情况:,滑动面上的最大抗滑力矩与滑动力矩之比,取1.11.5,饱和粘土,

36、不排水剪条件下,u0,fcu,Ks是任意假定某个滑动面的抗滑安全系数,实际要求的是与最危险滑动面相对应的最小安全系数,最危险滑动面圆心的确定,R,O,对于均质粘性土土坡,其最危险滑动面通过坡脚,=0,O,E,0,表1 最危险滑动面圆心位置 和 的数值,2、条分法,对于外形复杂、0的粘性土土坡,土体分层情况时,要确定滑动土体的重量及其重心位置比较困难,而且抗剪强度的分布不同,一般采用条分法分析,滑动土体分为若干垂直土条,条分法分析步骤,1.按比例绘出土坡剖面,2.任选一圆心O,确定滑动面,将滑动面以上土体分成几个等宽或不等宽土条,3.每个土条的受力分析,静力平衡,假设两组合力(Pi,Xi)(Pi

37、1,Xi1),条分法分析步骤,4.滑动面的总滑动力矩,5.滑动面的总抗滑力矩,6.确定安全系数,3、例题分析,【例】某土坡如图所示。已知土坡高度H=6m,坡角=55,土的重度=18.6kN/m3,内摩擦角=12,粘聚力c=16.7kPa。试用条分法验算土坡的稳定安全系数,分析:,按比例绘出土坡,选择圆心,作出相应的滑动圆弧将滑动土体分成若干土条,对土条编号 量出各土条中心高度hi、宽度b i,列表计算sin i、cos i以及土条重W i,计算该圆心和半径下的安全系数 对圆心O选不同半径,得到O对应的最小安全系数;在可能滑动范围内,选取其它圆心O1,O2,O3,重复上述计算,求出最小安全系数,

38、即为该土坡的稳定安全系数,计算,按比例绘出土坡,选择圆心,作出相应的滑动圆弧,取圆心O,取半径R=8.35m,将滑动土体分成若干土条,对土条编号,列表计算该圆心和半径下的安全系数,4、泰勒图表法,土坡的稳定性相关因素:,泰勒(Taylor,D.W,1937)用图表表达影响因素的相互关系,稳定因数,土坡的临界高度或极限高度,泰勒图表法适宜解决简单土坡稳定分析的问题:已知坡角及土的指标c、,求稳定的坡高H已知坡高H及土的指标c、,求稳定的坡角已知坡角、坡高H及土的指标c、,求稳定安全系数K s,5、例题分析,【例】一简单土坡=15,c=12.0kPa,=17.8kN/m3,若坡高为5m,试确定安全

39、系数为1.2时的稳定坡角。若坡角为60,试确定安全系数为1.5时的最大坡高,在稳定坡角时的临界高度:Hcr=KH=1.25=6m,【解答】,稳定数:,由=15,Ns=8.9查图得稳定坡角=57,由=60,=15查图得泰勒稳定数Ns为8.6,稳定数:,求得坡高Hcr=5.80m,稳定安全系数为1.5时的最大坡高Hmax为,四、土坡稳定分析中有关问题,1、挖方边坡与天然边坡,天然地层的土质与构造比较复杂,这些土坡与人工填筑土坡相比,性质上所不同。对于正常固结及超固结粘土土坡,按上述的稳定分析方法,得到安全系数,比较符合实测结果。但对于超固结裂隙粘土土坡,采用与上述相同的分析方法,会得出不正确的结果

40、,2、关于圆弧滑动条分法,计算中引入的计算假定:滑动面为圆弧 不考虑条间力作用 安全系数用滑裂面上全部抗滑力矩与滑动力矩之比来定义,3、土的抗剪强度指标值的选用,指标值过高,有发生滑坡的可能 指标值过低,没有充分发挥土的强度,就工程而言,不经济 实际工程中,应结合边坡的实际加荷情况,填料的性质和排水条件等,合理的选用土的抗剪强度指标。如果能准确知道土中孔隙水压力分布,采用有效应力法比较合理。重要的工程应采用有效强度指标进行核算。对于控制土坡稳定的各个时期,应分别采用不同试验方法的强度指标,4、安全系数的选用,影响安全系数的因素很多,如抗剪强度指标的选用,计算方法和计算条件的选择等。工程等级愈高

41、,所需要的安全系数愈大。目前,对于土坡稳定的安全系数,各个部门有不同的规定。同一边坡稳定分析,选用不同的试验方法、不同的稳定分析方法,会得到不同的安全系数。根据结果综合分析安全系数,得到比较可靠的结论。,5、查表法确定土质边坡的坡度,边坡的坡度允许值,应根据当地经验,参照同类土层的稳定坡度进行确定。一些规范和手册根据大量设计和运行经验规定了土坡坡度的允许值,可以通过查表法确定土质边坡的坡度。,1.土的剪切强度指标的选用;2.安全系数的选用;3.成层土边坡的稳定安全系数计算;4 坡顶开裂时的稳定性;5.渗流对土坡稳定的影响;6.按有效应力分析土坡稳定;7.地震对土坡稳定的影响.,工程中的土坡稳定性计算,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号