光学谐振腔-纵模、横模.ppt

上传人:小飞机 文档编号:6406562 上传时间:2023-10-27 格式:PPT 页数:23 大小:1.01MB
返回 下载 相关 举报
光学谐振腔-纵模、横模.ppt_第1页
第1页 / 共23页
光学谐振腔-纵模、横模.ppt_第2页
第2页 / 共23页
光学谐振腔-纵模、横模.ppt_第3页
第3页 / 共23页
光学谐振腔-纵模、横模.ppt_第4页
第4页 / 共23页
光学谐振腔-纵模、横模.ppt_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《光学谐振腔-纵模、横模.ppt》由会员分享,可在线阅读,更多相关《光学谐振腔-纵模、横模.ppt(23页珍藏版)》请在三一办公上搜索。

1、激光原理与技术原理部分,第10讲光学谐振腔:纵模、横模,10.1 光学谐振腔的纵模,平平腔的驻波均匀平面波近似一般的开放式光学谐振腔都满足条件:在满足该条件时,可以将均匀平面波认为是腔内存在的稳定电磁场的本征态,为平行平面腔内的电磁场提供一个粗略但是形象的描述;严格的理论证明,只要满足条件,则腔内损耗最低的模式仍可以近似为平面波,而是光腔的菲涅尔数,它描述了光腔衍射损耗的大小。,10.1.1 自由空间中的驻波,沿z方向传播的平面波可以表示为:沿-z方向传播的平面波为:发生重叠时的电磁场分布为:该叠加的场分布的振幅在沿z方向上有一个余弦分布。在z点处的振幅为当 时,振幅有最大值,称此位置为波腹;

2、当 时,振幅有最大值,称此位置为波节;驻波频率为平面波频率,而且可以为任意值。,10.1.1平平腔的驻波,平行平面腔中的驻波当光波在腔镜上反射时,入射波与反射波发生干涉,而多次往复反射形成的多光束干涉,稳定的振荡要求干涉加强,发生相长干涉的条件为:波从某一点出发,经腔内往返一次再回到原位时,相位应与初始出发时相差2的整数倍。以表示往返一周后的相位差:其中的q为任意正整数,将满足上式的波长以 来标记,则有:上式意味着一定长度的谐振腔只能对一定频率的光波形成正反馈,为腔的谐振频率,同时表明腔内的谐振频率是分立的。,10.1.1平平腔的驻波,当发生谐振时,腔内的光学长度为光波半波长的整数倍,这是腔内

3、驻波的特征。当腔内为均匀的折射率为 的物质时有:其中L为腔的几何长度,则,其中的 是物质中的谐振波长。当腔内物质为分段均匀,则有:当物质沿轴线分布不均匀时有:,10.1.2 光学谐振腔中的纵模,将腔内稳定存在的、由整数q表征的光波纵向分布称为腔的纵模(Longitudinal mode)。在简化模型中,q单值的决定模的谐振频率。腔的两相邻纵模的频率之差称为纵模间隔:对于腔内是均匀介质的谐振腔 则有:,10.1.2 光学谐振腔中的纵模,例:对于L=10cm的气体激光器,=1,则有;对于L=100cm的气体激光器,;对于L=10cm,=1.76的固体激光器,;当其他参数固定时,光腔的腔长增加,频率

4、间隔减小;对于微波腔,其尺寸可以与波长相比拟,则在腔中只会激发低阶本征模式,而在光学谐振腔中,它工作在极高的谐波上,既q是一个很大的整数。例如L=100cm,=632.8nm的He-Ne激光器:,10.1.3 腔内的多纵模振荡,某个纵模q能够在腔内存在必须满足以下条件:满足腔内谐振频率条件:q必须落在激活介质发光的原子谱线内,此时激活介质才能对该纵模提供增益;满足振荡阈值条件;在光学谐振腔中能够存在的纵模数最多只能有:,10.1.3 腔内的多纵模振荡,频率漂移对某个腔内纵模q:由此可知,当腔长L或者折射率发生变化时,纵模的谐振频率也会发生变化。这种振荡频率随外界环境变化而发生缓慢变化的现象称为

5、频率漂移。假设腔内纵模频率会随温度发生变化,如图所示,当温度为T0时,只有q能够振荡;当温度为T2时,q漂出T的范围,而q+1漂进T,则腔内模式发生了变化,称为跳模现象频率漂移现象都是有害的吗?,10.2.0 开腔模式的物理概念和衍射理论分析方法,我们关心的问题:在由无侧面的共轴反射镜构成的开放光学谐振腔区域中,是否存在不随时间变化的稳定的电磁场分布?如何求出这个分布的具体形式?在考察光学谐振腔中电磁场的分布时,我们首先关心的是镜面上的分布,因为镜面一般作为激光输出窗口,而输出激光的场分布就直接与镜面上的场分布有关。,10.2 开腔模式的物理概念,开腔中有多种损耗:由于反射镜尺寸有限,在反射镜

6、边界处引起的衍射损耗,该损耗会影响开腔中振荡的激光模式的横向分布;反射镜不完全反射、介质吸收等因素引起的损耗不影响模式的横向分布;开腔的理想模型:两块反射镜片处于均匀的各向同性介质中;,10.2 开腔模式的物理概念,假设初始时在镜面1上有分布为u1的电磁场从镜面1向镜面2传输,经过一次渡越,在镜面2上有分布为u2的场,在经过反射后再次渡越回到镜面1时场的分布为u3,如此反复。受到各种损耗的影响,不仅每次渡越会造成能量的衰减,而且振幅横向分布也会由于衍射损耗的存在而发生改变;由于衍射损耗仅发生在镜面的边缘,因此只有中心振幅大,边缘振幅小的场才会尽可能少的受到衍射损耗的影响。经过多次渡越后,这样的

7、模式除了振幅整体下降,其横向分布将不发生变化,即在腔内往返传输一次后可以“再现”出发时的振幅分布。,10.2 开腔模式的物理概念,将开腔中这种经一次往返可再现的稳定电磁场分布称为开腔的自再现模;自再现模经一次往返所发生的能量损耗定义为模的往返损耗,它等于衍射损耗;自再现模经一次往返所产生的相位差定义为往返相移,往返相移应为2的整数倍,这是由腔内模的谐振条件决定的。,10.2 开腔模式的物理概念,孔阑传输线开腔物理模型中衍射的作用腔内会随机的产生各种不同的模,而衍射效应将其中可以实现自再现的模式选择出来;由于衍射的影响,镜面上每一点的电磁场都可以视作前一个镜面上每一点作为次级子波源发出光波场的叠

8、加,因此每点的相位之间的关联就越来越紧密,即相干性越来越好;,10.3 开腔衍射理论分析,菲涅尔-基尔霍夫衍射积分惠更斯-菲涅尔原理:波前上每一点都可以看成是新的波源,发出次级子波,空间中的任意一点的光场就是这些子波在该点相干叠加的结果;该原理是研究光学衍射现象的基础,因此也必然是开腔模式的物理基础;该原理的数学表达式是基尔霍夫衍射积分方程;,10.3 开腔衍射理论分析,设已知空间某一曲面S上光波长的振幅和相位分布函数为u(x,y),则空间任一点P处的光场分布,可以看作曲面S上每点作为次级子波源发出的非均匀球面波在P点的叠加,由菲涅尔-基尔霍夫衍射积分公式来描述:为什么用菲涅尔-基尔霍夫衍射积

9、分公式?其中k=2/为波矢的模,也称为波数;dS是S面上的面积元;为源点与P点之间连线的长度;为源点处S面法线与P点连线之间的夹角;表示球面波,(1+cos)为倾斜因子,表示非均匀球面波;,10.3 开腔衍射理论分析,将该公式应用于研究谐振腔问题,它描述了镜面S1上光场u1(x,y)经过衍射后在镜面S2上面形成光场分布u2;要做出如下假设:1、在小角度近似下有:并且在此情况下可以将光场的两种偏振状态作为独立变量分别求解;2、,被积函数中的指数因子 不能简单将用L代替,只能根据不同谐振腔情况来简化;3、腔内振幅衰减是缓慢的;,10.3 开腔衍射理论分析,经过q次传播后:将第一个假设带入其中有:由

10、开腔理论中描述的自再现模的定义可知,在开腔内稳定传输的光波模式应满足关系:在稳定情况下,uq从镜面S1传播到S2时,除了一个表示振幅衰减和相位移动的、与坐标无关的复常数因子外,其分布能够被uq+1再现。,10.3 开腔衍射理论分析,腔内存在的稳定光波场,它们由一个腔面传播到另一个腔面的过程中,虽然会受到衍射效应的影响,但是这些光波长在两个腔面处的相对振幅分布和相位分布保持不变。,10.3 开腔衍射理论分析,以E(x,y)表示开腔中的稳定光场分布函数u,则上式可以简化为:该式是开腔自再现模满足的积分方程,满足以上方程的函数E称为本征函数,为本征值,而K为积分方程的核;对于对称腔:,10.3 开腔

11、衍射理论分析,满足上式的本征函数E就是腔的自再现模,也称为腔的横模,E一般是复函数,其模|E(x,y)|描述的是镜面上的振幅分布,其幅角argE(x,y)表示镜面上的相位分布;为复常数,不妨设为:其中的a、为与坐标无关的实常数,则自再现模可以表示为:由此可见,e-a表示腔内渡越一次后自再现模的振幅衰减,a越大损耗越大,a=0表示无损耗传输;表示渡越一次后自再现模的相位滞后,越大相位滞后越多。,10.3 开腔衍射理论分析,从镜面S1出射的光功率为:被镜面S2反射后的自再现模的功率为:自再现模在腔内渡越一次时受到的功率损失,称为模的单程损耗:|越大,模的单程损耗越大,这个损耗中包含了几何光学的光束横向偏折损耗和镜面边缘的衍射损耗。,10.3 开腔衍射理论分析,自再现模在腔内经过一次渡越的总相移定义为:由,可得;从开腔的谐振条件可知要形成稳定的自再现模,必然要求其在腔内往返传输一次的总相移为2的整数倍:即,q为正整数,此公式为对称开腔的谐振条件。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号