《运筹学课件-第三章运输问题.ppt》由会员分享,可在线阅读,更多相关《运筹学课件-第三章运输问题.ppt(93页珍藏版)》请在三一办公上搜索。
1、第三章 运输问题,一、运输问题及其数学模型网络图、线性规划模型、运输表二、用表上作业法求解运输问题初始解、解的检验、解的改进三、运输问题的进一步讨论产销不平衡、有运转四、应用举例,一、运输问题及其数学模型,供应地,需求地,例:,运输问题网络图,运输问题数学模型,供应地约束,需求地约束,运输问题线性规划模型,运输问题的描述:设某种物品有m个产地A1,A2,.,Am,各产地的产量分别是a1,a2,.,am;有n个销地B1,B2,.,Bn,各销地的销量分别为b1,b2,.bn。假定从产地Ai(i=1,2,m)向销地出Bj(jl,2,.n)运输单位物品的运价是cij,问怎样调运这些物品才能使总运费最小
2、?,运输问题信息表,运输问题线性规划模型,运价表,如果a=b,则称为产销平衡运输问题,否则,称为产销不平衡运输问题。,运输问题线性规划模型,产销平衡运输问题的数学模型表示:,该模型是一个线性规划模型,可以用单纯形法求解。但是变量数目非常多。如3个产地,4个销地。变量数目会有19个之多。因此应该寻求更简便的解法。为了说明适于求解运输问题的更好的解法,先分析运输问题数学模型的特点。,运输问题线性规划模型,运输问题线性规划模型,运输问题数学模型的特点:1运输问题有有限最优解,是一个可行解。同时,目标函数有下界,且不会趋于负无穷。所以,必存在有限最优解。,运输问题线性规划模型,2运输问题约束条件的系数
3、矩阵,n 行,m 行,系数列向量:,运输问题线性规划模型,由此可知,运输问题具有下述特点:(1)约束条件系数矩阵的元素等于0或1;(2)约束条件系数矩阵的每一列有两个非零元素,这对应于每一个变量在前m个约束方程中出现一次,在后n个约束方程中也出现一次;对产销平衡运输问题,除上述两个特点外,还有以下特点:(3)所有结构约束条件都是等式约束;(4)各产地产量之和等于各销地销量之和。秩(A)=m+n-1 运输问题的基可行解中应包含m+n-1个基变量.,例1 某部门有3个生产同类产品的工厂(产地),生产的产品由4个销售点(销地)出售,各工厂的生产量、各销售点的销售量(假定单位均为t)以及各工厂到各销售
4、点的单位运价(元/t)示于表32中,要求研究产品如何调运才能使总运费最小。,用xij表示由第i个产地运往第j个销地的产品数量,即可写出该问题的数学模型:,运输问题线性规划模型,3.运输问题的解(1)解x必须满足模型中的所有约束条件;(2)基变量对应的约束方程组的系数列向量线性无关;(3)解中非零变量xij的个数不能大于(m+n-1)个,原因是运输问题中虽有(m+n)个结构约束条件,但由于总产量等于总销量,故只有(m+n-1)个结构约束条件是线性独立的;(4)为使迭代顺利进行,基变量的个数在迭代过程中保持为(m+n-1)个。运输问题解的每一个分量,都唯一对应其运输表中的一个格 填有数字的格 空格
5、,下表给出了例1的一个解。,二、表上作业法,表上作业法是一种迭代法,迭代步骤为:1、先按某种规则找出一个初始解(初始调运方案);2、再对现行解作最优性判别;3、若这个解不是最优解,就在运输表上对它进行调整改进,得出个新解;4、再判别,再改进;5、直至得到运输问题的最优解为止。迭代过程中得出的所有解都要求是运输问题的基可行解。,二、表上作业法,例:,1、初始基可行解最小元素法,思路:为了减少运费,应优先考虑单位运价最小(或运距员短)的供销业务,最大限度地满足其供销量。在可供物品已用完的产地或需求已全部满足的销地,以后将不再考虑。然后,在余下的供、销点的供销关系中,继续按上述方法安排调运,直至安排
6、完所有供销任务,得到一个完整的调运方案(完整的解)为止。这样就得到了运输问题的一个初始基可行解(初始调运方案)。由于该方法基于优先满足单位运价(或运距)最小的供销业务,故称为最小元素法。,例:,1、初始基可行解最小元素法,8,2,10,14,8,6,所以,初始基可行解为:目标函数值Z246,练习题,12,13,13,19,1,2,1、初始基可行解西北角法,在满足约束条件下尽可能的给最左上角的变量最大值.,8,8,6,4,8,14,所以,初始基可行解为:目标函数值Z372,练习题,8,13,13,14,6,6,1、初始基可行解沃格尔法,最小元素法,有时按某一最小单位运价优先安排物品调运时,却可能
7、导致不得不采用运费很高的其他供销点,从而使整个运输费用增加。,1、初始基可行解沃格尔法,对每一个供应地或销售地,均可由它到各销售地或到各供应地的单位运价中找出最小单位运价和次小单位运价,并称这两个单位运价之差为该供应地或销售地的罚数。沃格尔法基本思想:在罚数最大处采用最小运费调运。如果罚数的值不大,当不能按最小单位运价安排运输时造成的运费损失不大;反之,如果罚数的值很大,不按最小运价组织运输就会造成很大损失,故应尽量按最小单位运价安排运输。沃格尔法就是基于这种考虑提出来的。,1、初始基可行解沃格尔法,计算步骤:1)分别算出各行、各列的罚数。2)从行、列中选出差额最大者,选择它所在行、列中的最小
8、元素,进行运量调整。3)对剩余行、列再分别计算各行、列的差额。返回1)、2)。,1、初始基可行解沃格尔法,14,所以,初始基可行解为:目标函数值Z244,8,8,12,2,4,练习题,思路:要判定运输问题的某个解是否为最优解,可仿照一般单纯形法,检验这个解的各非基变量(对应于运输表中的空格)的检验数,若有某空格(Ai,Bj)的检验数为负,说明将xij变为基变量将使运输费用减少,故当前这个解不是最优解。若所有空格的检验数全非负,则不管怎样变换解均不能使运输费用降低,即目标函数值已无法改进,这个解就是最优解。以最小元素法的初始解为例。假设产地A1供应1个单位的物品给销地B1。则解的变化和目标函数的
9、变化如何。,2、解的最优性检验闭回路法,2、解的最优性检验闭回路法,例:,8,2,10,14,8,6,1,2,1,10,12,-1,由此可知,为了求某个空格(非基变量)的检验数,先要找出它在运输表上的闭回路,这个闭回路的顶点,除这个空格外,其它均为填有数字的格(基变量格),它是由水平线段和竖直线段依次联接这些顶点构成的一封闭多边形。每个空格都唯一存在这样的一条闭回路。,特征:1.每个顶点都是转角点.2.每一边都是水平或垂直的.3.每一行(或列)若有闭回路的顶点,则必有两个.,某空格的检验数是以该空格为第一个顶点,某回路的奇数顶点运价和减去其偶数顶点运价和。,位于闭回路上的一组变量,它们对应的运
10、输问题约束条件的系数列向量线性相关,因而在运输问题基可行解的迭代过程中,不允许出现全部顶点由填有数字的格构成的闭回路。这就是说,在确定运输问题的基可行解时,除要求非零变量的个数为(mn1)个外,还要求运输表中填有数字的格不构成闭回路。,非基变量xij的检验数闭回路法(1),例:确定下列可行解的检验数,2、解的最优性检验对偶变量法,原问题,设其对偶变量为:,原问题系数矩阵:,对偶问题:,考虑原问题变量xj的检验数为:,假设已得到一个基可行解,其基变量为:,则有:,s=m+n-1,则运输问题变量xij的检验数为:,方程组有m+n-1个方程。因为运输表中每行和每列均有基变量,因此上面方程组含有全部m
11、+n个对偶变量。故解不唯一,其解称为位势。若上述方程的某组解满足对偶问题的所有条件,即:,此时,原问题与对偶问题均可行,故达到最优。其解分别为:,例:,8,2,10,14,8,6,练习题,3、解的改进闭回路调整法,改进的方法是在运输表中找出这个空格对应的闭回路,在满足所有约束条件的前提下,使xij尽量增大并相应调整此闭回路上其它顶点的运输量,以得到另一个更好的基可行解。,解改进的具体步骤为(1)以xij为换入变量,找出它在运输表中的闭回路;(2)以空格(Ai,Bj)为第一个奇数顶点,沿闭回路的顺(或逆)时针方向前进,对闭回路上的顶点依次编号;(3)在闭回路上的所有偶数顶点中,找出运输量最小的顶
12、点(格子),以该格中的变量为换出变量;(4)以换出变量的运输量为调整量,将该闭回路上所有奇数顶点处的运输量都增加这一数值,所有偶数顶点处的运输量都减去这一数值,从而得出一新的运输方案。该运输方案的总运费比原运输方案减少,改变量等于换出变量的检验数。然后,再对得到的新解进行最优性检验,加不是最优解,就重复以上步骤继续进行调整,一直到得出最优解为止。,例:,例:,8,2,12,14,8,4,0,2,2,9,12,1,由于所有非基变量的检验数全非负,故这个解为最优解。解为:MINz又由于非基变量有零检验数,所以有无穷多最优解。,练习题,练习题,答案,练习:用最小元素法给出初始解,并调整至最优。,8,
13、8,10,14,0,8,4、需要说明的几个问题,1若运输问题的某一基可行解有几个非基变量的检验数均为负,在继续进行迭代时,取它们中的任一变量为换入变量均可使目标函数值得到改善,但通常取小于零的检验数中最小者对应的变量为换入变量。2当迭代到运输问题的最优解时,如果有某非基变量的检验数等于零,则说明该运输问题有多重(无穷多)最优解。3(二)退化 某一基变量 的值为0初始解 在确定初始解的供需关系时,若在确定(i,j)的数字时,要划去第i行,第j列。为使在产销平衡表上有m+n-1个数字格,须在第i 行或j列中(非i,j)选一数字格为0。退化解 闭回路中有(-)标记中有两个或以上相等的最小数。调整后出
14、现退化解,必须在一数字格中填入0,以表明其为基变量。,三、运输问题的进一步讨论,上一节讲述的运输问题的算法,是以总产量等于总销量(产销平衡)为前提的。实际上,在很多运输问题中,总产量不等于总销量。在以上讨论中,假定物品由产地直接运送到销售目的地,不经中间转运。但是,常常会遇到这种情形:需先将物品由产地运列某个中间转运站(可能是另外的产地、销地或中间转运仓库),然后再转运到销售目的地。有时,经转运比直接运到目的地更为经济。因此,在决定运输方案时有必要把转运也考虑进去。,1、产销不平衡的运输问题,表上作业法 以产销平衡 为前提。,2,3,2,1,3,4,1,s2=27,s3=19,d1=22,d2
15、=13,d3=12,d4=13,s1=14,供应地,需求地,6,7,5,3,8,4,2,7,5,9,10,6,例:假设供应量大于需求量,运输问题网络图,+5,5,d5=5,假想销地,0 0 0,s3=24,运输问题数学模型,供应地约束,需求地约束,+x15,+x25,+x35,+5,+x15+x25+x35=5,X15 x25 x35,产大于销,产销不平衡,产销平衡,模型:,设 为Ai的贮存量。,将多余物原地贮存。,令:,理解:产 销 假想有一销地 j=n+1 销量为 运价,模型:,运价表为:,例:某市有三个造纸厂A1,A2,A3,其纸的产量分别为8,5和9个单位,有4个集中用户B1,B2,B
16、3,B4,其需用量分别为4,3,5和6个单位。由各造纸厂到各用户的单位运价如表315所示,请确定总运费最少的调运方案。,解:由于总产量22大于总销量18,故本问题是个产销不平衡运输问题。增加一假想销地B5,用表上作业法求解。,解:由于总产量22大于总销量18,故本问题是个产销不平衡运输问题。增加一假想销地B5,用表上作业法求解。,2、有转运的运输问题,转运量 t1t2t3t4t5t6t7,xij,转运量 t1t2t3t4t5t6t7,假设单位运转费用为ti,则线性规划模型为:,第二项为常数,对求解结果无影响,可去掉。,模型变为下列形式:,这是一个产销平衡运输问题的数学模型。可以列出其运价表,用
17、表上作业法求解。,其运价表形式如下(注意其中对角线上的运价值):,建立一般意义上的数学模型,设:ai:第i个产地的产量(净供应量);bj:第j个销地的销量(净需要量);xij:由第i个发送地运到第j个接收地的物品数量;cij:由第i个发送地到第j个接收地的单位运价,ti:第i个地点转运物品的数量;ci:第i个地点转运单位物品的费用。将产地和销地统一编号,并把产地排在前面。销地排在后面,则有:,令:,建立数学模型:,注:所有i=j,cij=-ci,a1a5b1b5Qc1c5c11c55,例:如图所示是一个运输系统,它包括二个产地(1和2)、二个销地(4和5)及一个中间转运站(3),各产地的产量和
18、各销地的销量用相应节点处箭线旁的数字表示,节点联线上的数字表示其间的运输单价,节点旁的数字为该地的转运单价,试确定最优运输方案。,运用最小元素法,求初始运输方案,如下表:,最优运输方案如下表:,回答问题1、在运输问题数学模型中,为什么模型的(m+n)个约束中最多只有(m+n-1)个是独立的?2试述用最小元素法确定运输问题的初始基可行解的基本思路。3如何用闭回路法求检验数?4 沃格尔法的基本思想是什么?什么是罚数?5在解的改进过程中,如何确定调整量?6如何把一个产销不平衡的运输问题(含产大于销和销大于产)转化为产销平衡的运输问题。,判断下列说法是否正确(1)运输问题是一种特殊的线性规划模型,因而
19、求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解;(2)在运输问题中,只要给出一组合(m+n-1)个非零的xij,且满足xij=ai,xij=bj,就可以作为一个初始基可行解;(3)表上作业法实质上就是求解运输问题的单纯形法;(4)按最小元素法(或伏格尔法)给出的初始基可行解,从每一空格出发可以找出而且仅能找出唯一的闭回路;(5)如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k,最优调运方案将不会发生变化;(6)如果运输问题单位运价表的某一行(或某一列)元素分别乘上一个常数k,最优调运方案将不会发生变化;(7)当所有产地产量和销地的销量均为整数
20、值时,运输问题的最优解也为整数值,1,2,6不对,练习:用位势法(对偶变量法)求其检验数。,运用举例,例 1、某飞机制造厂生产一种民用喷气式飞机,生产的最后阶段是制造喷气发动机,以及把发动机安装到已完成的飞机骨架上(一种很快的操作)。为了不误合同规定的交货期,第一.二.三.四月必须安装发动机的台数分别为:10.15.25.20。但受生产能力等条件的限制,这些月份的最高生产台数分别为:25.35.30.10。每月单台发动机的存储费用为1.5万元。已知一.二.三.四月份的单台生产费用各为:108.111.110.113万元。试安排这四个月的生产计划,使生产费用和存储费用之和最小。1)建立此问题的一
21、般LP模型。2)把此问题作为运输问题来处理,试建立相应的运输表格。3)求此“运输问题”的最优解。,解:1)设xi表示第i个月生产发动机的台数,yi表示第个月的存储台数,则一般LP模型为:,由于不能缺货,并考虑到是不平衡问题(虚设收点5)建立如下运输表格,最小费用为:w*=7730(万元),例2 某航运公司承担六个港口城市的四条固定航线的物资运输任务。已知各条航线的起点、终点城市及每天航班数见表:,每条航线使用相同型号的船只,各城市间的航程天数如表:,每条船只每次装卸货物的时间各需一天。?该航运公司至少应配备多少条船,才能满足所有航线的运货需求。,每天载货航程所需的船只数:,分析:1)所需船只可
22、分为两部分:载货航程所需的船只数、各港口间调度所需的船只数。2)每天载货航程所需的船只数:,3)每天各港口调度所需船只数。,为使配备船只数最少,就应将的船只调运到,由表上作业法,最优调运为:,每天用于调度的最少船只数为:5*2+13*1+17*1+7*1=47 最少总需求为 91+47=138(条),例3:某玩具公司分别生产三种新型玩具,每月可供量分别为l000件,2000件,2000件,它们分别被送到甲、乙、丙三个百货商店销售。已知每月百货商店各类玩具预期销售量均为1500件,由于经营方面原因,各商店销售不同玩具的盈利额不同(见表)。又知丙百货商店要求至少供应C玩具1000件、而拒绝进A种玩
23、具。求满足上述条件下使总盈利额为最大的供销分配方案。,增加一个假想需求部门丁。,例4:有甲、乙、丙三个城市,每年分别需要煤炭320,250,350(万吨),出A,B两个煤矿负责供应。已知煤矿年产量分别A为400万吨,B为450万吨,从两煤矿至各城市煤炭运价(万元万吨)如表323所示。由于需求大于产量,经协商平衡,甲城市必要时可少供030万吨,乙城市需求量须全部满足,丙城市需求量不少于270万吨。试求将甲、乙两矿煤炭全部分配出去,满足上述条件又使总运费为最低的调运方案。,例4:有甲、乙、丙三个城市,每年分别需要煤炭320,250,350(万吨),出A,B两个煤矿负责供应。已知煤矿年产量分别A为400万吨,B为450万吨,从两煤矿至各城市煤炭运价(万元万吨)如表323所示。由于需求大于产量,经协商平衡,甲城市必要时可少供030万吨,乙城市需求量须全部满足,丙城市需求量不少于270万吨。试求将甲、乙两矿煤炭全部分配出去,满足上述条件又使总运费为最低的调运方案。,地一 i xj,有Cj-Zj=0,0 0,数学形式:,