《ANSYS模态分析实例.ppt》由会员分享,可在线阅读,更多相关《ANSYS模态分析实例.ppt(20页珍藏版)》请在三一办公上搜索。
1、模态分析塔科马大桥,Workshop 1,Workshop 1 目的,目的在于计算某一悬索桥模型的振动特性塔科马海峡大桥,又称为“Galloping Gertie”,因其在1940年出任意外的倒塌而出名。在该实例中,首先对桥的模型进行分析,然后计算大桥的固有频率和固有振型。在求解中,我们考虑到了结构的“预应力”,因为自重载荷预先作用于桥梁上而导致拉索产生了预拉力,从而增加了整体刚度。然后通过谐响应分析来模拟暴风导致桥倒塌以及漩涡脱落现象。,Workshop 1 假设,在桥梁四个桥塔塔底施加固定约束。在桥梁的两端约束竖直和横向位移。所有边界条件施加在点上。,Workshop 1 起始页,从“Wo
2、rkBench Project Launcher”点击“Simulation”。如果进入“Simulation”,点击 FileNew 基于培训,可以点击“No:do not save any items”点击“GeometryFrom File”,从相应文件夹中打开几何模型文件 gallop_scale.agdb,Workshop 1 设置,当导入几何模型之后,从“Map of Analysis Types”选择“Static Structural”。我们首先进行静力分析,为预应力模态分析做准备。点击 OK确认单位系统“Units Metric(m,kg,N),1,2,3,Workshop
3、1 前处理,桥梁模型包含有面体素和线体素。首先指定桥面板的厚度。展开“Geometry”分支,向下滚动选择“Surface Body”(deck surface).注意“Thickness”位置处呈黄色,表明还未定义左键单击(LMB)“thickness”位置,输入厚度:0.106m。为了节省时间,我们采用已经指定给线体的梁截面。,4,Workshop 1 环境,对于桥塔塔底,在目录树中点击“Static Structural”,点击“Insert Fixed Supports”.切换至点选模型按住键,左键单击选取桥塔底部的4个点.在Details中,点击“Apply”在该过程中,如果必要,可
4、以对模型进行旋转,改变视图,5,6,7,Workshop 1 环境,对于桥的两端的支撑,选择 InsertDisplacement.切换至边选模式和框选模式,选择如图所示的线.对于Y 和Z 方向,输入0替换“Free”,“X”方向仍然保留为“Free”.,8,9,Workshop 1 环境,在预应力分析中,需要考虑”重力“的影响.选择InertialStandard Earth Gravity在“Details”中,改变方向为“-Z Direction”.,11,10,Workshop 1 静力计算结果,现在,点击“Solve”,获得静力求解结果,或者我们直接跳过这一步,直接插入模态分析。,1
5、2,Workshop 1 模态求解,当”Static Structural”分支建立完成(考虑预应力分析),即可添加模态分析.点击 Solution分支,点击右键选择“Create Modal Analysis with Prestress”这将在目录树中添加“Modal”分支,采用“Static Structural”作为初始条件.,13,Workshop 1 模态求解,修改 ModalAnalysis Settings的Details设置在Details窗口中,提取最大的模态数为10修改“Output Controls”为Calculate Stress“Yes”Calculate Str
6、ain“Yes”,15,14,Workshop 1 模态求解,当所有的分支准备完毕,即可求解预应力模态分析.经过最后的校核,所有的分支的符号必须是下面的一种:(准备好)(完成)求解.工具栏按钮 Solve注意:点击工具条的求解,将会求解所有的分支。如果我们希望只求解一个分支的话,点击相应的分支进行求解即可。,16,Workshop 1 结果,在模态分析求解完毕,即可查看每一阶频率的固有振型.在目录树中点击“Modal Solution”.在“Tabular Data”左键单击顶部,然后点击右键选择“Create Mode Shape Results”点击求解,后处理结果将会被更新.,17,.W
7、orkshop 1 结果,查看每一阶模态的分析结果,点击每一阶模态对应的“Total Deformation”.可以动画显示每一阶振型。注意:关注最高阶自然频率的振型:Max Indicated Freq=_Hz.,18,Workshop 1 评述,记住:在模态振型中的位移幅值是相对的,并不反应实际的位移幅值.最大的幅值将取决于系统的实际能量输入.下面我们将进行一次谐响应分析,以确定实际动态响应的幅值.,Workshop 1 谐响应分析求解,当静力分析和模态分析分支准备完毕,即将添加谐响应分析.点击New Analysis,选择 Harmonic Response查看“Details”窗口的设
8、置.这将在目录树中添加“Harmonic Response”.输入频率范围求解方法采用默认的模态叠加法(Mode Superposition).展开“Damping Controls”,在“Constant Damping Ratio”中输入0.03.,21,19,20,.03,Workshop 1 谐响应分析环境设置,在桥面施加压力载荷作为谐响应载荷类型.在Harmonic Response分支中,右键选择InsertPressure 切换至面选择.选择整个桥面在Details窗口中,改变“Define by”为“Components”在“Y Component”中输入10100从“Stat
9、ic Structural”分支复制边界条件至“Harmonic Response”分支求解谐响应分析.,23,10100,22,24,25,Workshop 1 谐响应分析结果,当谐响应分析求解完毕,查看结果.可以选择点、面等,绘制平均值、最小值、最大值等结果.在 Harmonic Solution分支,选择插入频率响应 InsertFrequency Response在Details窗口中,采用面选择,在桥梁的中心选取面,单击 Apply指定为“use Maximum”选择 Directional Deformation,方向为“Z Axis”在本例中,Z轴是竖直方向使用 Solve 或者
10、 右键 Evaluate All Results,26,27,28,Note:of course you can plan ahead and insert all the Harmonic Response Solution and Frequency Response Result objects when you originally inserted the Modal Solution.In that case you would Solve them all at once,or you can add the objects incrementally as we have done here.,Workshop 1 谐响应频率响应结果,在Harmonic Solution分支,点击Frequency Response频率响应(Z向变形)为与频率的关系曲线.在曲线上的频率范围是根据前面指定的最小和最大频率.,30,注意:实际的求解结果会随网格、单位指定的不同等因素而稍有不同,如果时间允许的话,改变频率范围和求解间隔,然后重新求解。,