半导体物理与器件第八章课件.ppt

上传人:牧羊曲112 文档编号:1315579 上传时间:2022-11-08 格式:PPT 页数:50 大小:1.33MB
返回 下载 相关 举报
半导体物理与器件第八章课件.ppt_第1页
第1页 / 共50页
半导体物理与器件第八章课件.ppt_第2页
第2页 / 共50页
半导体物理与器件第八章课件.ppt_第3页
第3页 / 共50页
半导体物理与器件第八章课件.ppt_第4页
第4页 / 共50页
半导体物理与器件第八章课件.ppt_第5页
第5页 / 共50页
点击查看更多>>
资源描述

《半导体物理与器件第八章课件.ppt》由会员分享,可在线阅读,更多相关《半导体物理与器件第八章课件.ppt(50页珍藏版)》请在三一办公上搜索。

1、第八章 pn结二极管,1,高等半导体物理与器件第八章 pn结二极管,第八章 pn结二极管1高等半导体物理与器件第八章 p,第八章 pn结二极管,2,n结电流产生-复合电流和大注入pn结的小信号模型,本章内容,第八章 pn结二极管2pn结电流本章内容,第八章 pn结二极管,3,(1)pn结内电荷流动的定性描述,8.1 pn结电流,第八章 pn结二极管3(1)pn结内电荷流动的定性描述8.1,第八章 pn结二极管,4,n 结加正偏Va,Va基本上全降落在耗尽区的势垒上由于耗尽区中载流子浓度很小,与中性p区和n区的体电阻相比耗尽区电阻很大势垒高度由平衡时的eVbi降到e(Vbi-Va) ;正向偏压V

2、a产生的电场与内建电场反向,势垒区中电场强度减弱,相应使空间电荷数量减少,势垒区宽度变窄。,第八章 pn结二极管4pn 结加正偏Va,Va基本上全降落在,第八章 pn结二极管,5,产生净扩散流;电子:n区p区,空穴:p区n区热平衡,载流子漂移与扩散的平衡被打破:势垒高度降低,势垒区电场减弱,漂移减弱,因而漂移小于扩散,产生净扩散流。,空间电荷区的两侧产生过剩载流子;正向注入:通过势垒区进入p区的电子和进入n区的空穴分别在界面(-xp和xn)处积累,产生过剩载流子。少子注入:由于注入载流子对它进入的区域都是少子。小注入:注入的少子浓度远小于进入区多子浓度。边界上注入的过剩载流子,不断向体内扩散,

3、经过大约几个扩散长度后,又恢复到平衡值。,第八章 pn结二极管5产生净扩散流;电子:n区p区,空穴:,第八章 pn结二极管,6,(2)理想的电流-电压关系,理想pn结I-V特性方程的四个基本假设条件:pn结为突变结,可以采用理想的耗尽层近似,耗尽区以外为中性区;载流子分布满足麦克斯韦-玻尔兹曼近似;满足小注入的条件;pn结内电流处处相等;结内电子电流和空穴电流分别为连续函数;耗尽区内电子电流和空穴电流为恒定值。,第八章 pn结二极管6(2)理想的电流-电压关系理想pn结I,第八章 pn结二极管,7,第八章 pn结二极管7,第八章 pn结二极管,8,(3)边界条件,热平衡下p区少子浓度与n区多子

4、浓度联系起来。,第八章 pn结二极管8(3)边界条件热平衡下p区少子浓度与n,第八章 pn结二极管,9,正偏,空间电荷区势垒高度降低,内建电场减弱,势垒降低,空间电荷区缩短,内建电场减弱,扩散电流漂移电流,空间电荷区边界处少数载流子浓度注入,第八章 pn结二极管9正偏,空间电荷区势垒高度降低,内建电场,第八章 pn结二极管,10,偏置状态下p区空间电荷区边界处的非平衡少数载流子浓度,注入水平和偏置电压有关,边界条件,第八章 pn结二极管10偏置状态下p区空间电荷区边界处的非平,第八章 pn结二极管,11,注入到p/n型区中的电子/空穴会进一步扩散和复合,因此公式给出的实际上是耗尽区边界处的非平

5、衡少数载流子浓度。上述边界条件虽是根据pn结正偏条件导出,但对反偏也适用。因而当反偏足够高时,由边界条件可得,耗尽区边界少数载流子浓度基本为零。,第八章 pn结二极管11注入到p/n型区中的电子/空穴会进一,第八章 pn结二极管,12,正偏pn结耗尽区边界处少数载流子浓度的变化情况,反偏pn结耗尽区边界处少数载流子浓度的变化情况,例8.1,第八章 pn结二极管12正偏pn结耗尽区边界处少数载流子浓度,第八章 pn结二极管,13,(4)少数载流子分布 假设:中性区内电场为0无产生,稳态pn结,长pn结,第八章 pn结二极管13(4)少数载流子分布,第八章 pn结二极管,14,边界条件,双极输运方

6、程可以简化为:,第八章 pn结二极管14边界条件双极输运方程可以简化为:长p,第八章 pn结二极管,15,双极输运方程的通解为:,从上述四个边界条件可得:,第八章 pn结二极管15双极输运方程的通解为:从上述四个边界,第八章 pn结二极管,16,由此,可得出pn结处于正偏和反偏时,耗尽区边界处的少数载流子分布。,正偏,反偏,第八章 pn结二极管16由此,可得出pn结处于正偏和反偏时,,第八章 pn结二极管,17,(5)理想pn结电流第四个假设pn结电流为空穴电流和电子电流之和空间电荷区内电子电流和空穴电流为定值,第八章 pn结二极管17(5)理想pn结电流,第八章 pn结二极管,18,因此,耗

7、尽区靠近n型区一侧边界处空穴的扩散电流密度为:,n结均匀掺杂,上式可表示为:,利用少子分布公式,可得耗尽区靠近n型区一侧边界处空穴的扩散电流密度为:,n结正偏,空穴电流密度沿x轴正向,即从p型区流向n型区。,第八章 pn结二极管18因此,耗尽区靠近n型区一侧边界处空穴,第八章 pn结二极管,19,类似,耗尽区靠近p型区一侧边界处电子的扩散电流密度为:,利用少子分布公式,上式简化为:,n结正偏,上述电子电流密度也是沿着x轴正方向。若假设电子电流和空穴电流在通过pn结耗尽区时保持不变,则流过pn结的总电流为:,第八章 pn结二极管19类似,耗尽区靠近p型区一侧边界处电子,第八章 pn结二极管,20

8、,上式为理想pn结电流-电压特性方程,可进一步定义Js:,理想pn结的电流-电压特性可简化为:,尽管理想pn结电流-电压方程是根据正偏pn结推出,但它同样适用于理想反偏状态。可以看到,反偏时,电流饱和为Js。,第八章 pn结二极管20上式为理想pn结电流-电压特性方程,,第八章 pn结二极管,21,n结正偏电压远大于几个Vt时,上述电流-电压特性方程中的(-1)项可忽略。pn结二极管I-V特性及其电路符号如下图所示。,第八章 pn结二极管21pn结正偏电压远大于几个Vt时,上述,第八章 pn结二极管,22,可见,少子扩散电流呈指数下降,而流过pn结的总电流不变,二者之差是多子电流。p型区空穴电

9、流提供了穿过空间电荷区向n型区注入的空穴提供了因与过剩少子电子复合而损失的空穴,(6)物理学概念小结 pn结耗尽区两侧少子的扩散电流分别为:,第八章 pn结二极管22可见,少子扩散电流呈指数下降,而流过,第八章 pn结二极管,23,下图显示了正偏下pn结内的理想电子电流与空穴电流成分。,例8.4,第八章 pn结二极管23下图显示了正偏下pn结内的理想电子电,第八章 pn结二极管,24,温度效应对pn结二极管正、反向I-V特性的影响如下图所示:温度升高,一方面二极管反向饱和电流增大,另一方面二极管的正向导通电压下降。,(7)温度效应,第八章 pn结二极管24温度效应对pn结二极管正、反向I-V,

10、第八章 pn结二极管,25,(8)短二极管,前面分析中,假设理想pn结二极管n型区和p型区的长度远大于少子扩散长度。实际pn结中,往往有一侧的长度小于扩散长度,如下图所示,n型区的长度WnLp。此时n型区中过剩少子空穴的稳态输运方程为:,第八章 pn结二极管25(8)短二极管前面分析中,假设理想p,第八章 pn结二极管,26,x=xn处的边界条件仍为:,n型区另一边界条件需修正:假设x=xn+Wn处为欧姆接触,即表面复合速度无穷大,因此过剩载流子浓度为零。即:,对于上述关于n型区中过剩少子空穴的稳态输运方程,其解的形式仍为:,利用上述两个边界条件,可得稳态输运方程解为:,第八章 pn结二极管2

11、6x=xn处的边界条件仍为:n型区另一,第八章 pn结二极管,27,对于WnLp的条件,将上式进一步简化:,则稳态输运方程最终的解为:,由上式可见,短n型区中过剩少子空穴浓度呈线性分布。n型区中少子空穴的扩散电流密度为,由此可见:短n型区中,少子空穴的扩散电流密度保持不变,即在短n型区中少子空穴的复合作用基本上可忽略不计。,第八章 pn结二极管27对于WnLp的条件,将上式进一步,第八章 pn结二极管,28,势垒高度和载流子浓度的关系偏压对空间电荷区边界处注入的非平衡载流子浓度的调制理想pn结电流-电压关系。正偏pn结,正偏电流大小随正偏电压的增加而指数增加;反偏时,趋于饱和。随温度升高,反偏

12、饱和电流增大,相同正向电流偏压降低。当pn结二极管中性区长度远小于扩散长度时为短二极管,扩散区缩短,扩散区内的复合作用可忽略。,小 结,第八章 pn结二极管28势垒高度和载流子浓度的关系偏压对空,第八章 pn结二极管,29,8.2 产生-复合电流和大注入,(1)产生-复合电流由肖克莱-里德-霍尔复合理论(P159页6.5.1)可知,过剩电子与空穴的复合率表达式为其中,参数n、p分别为电子浓度与空穴浓度。,推导理想pn结I-V特性时,完全忽略载流子在pn结空间电荷区中可能发生的产生-复合。实际pn结空间电荷区中,载流子的产生-复合现象由肖克莱-里德-霍尔复合理论给出。,第八章 pn结二极管298

13、.2 产生-复合电流和大注入(1,反偏产生电流,第八章 pn结二极管,30,对于反偏pn结,认为空间电荷区内不存在可移动的电子和空穴。因此,np0,则过剩电子与空穴的复合率变为上式中的负号意味着负的复合率;实际上,在反偏下,空间电荷区内产生了电子-空穴对。,由于反偏空间电荷区电子和空穴浓度基本为零,过剩电子和过剩空穴的复合过程实际上是一个恢复到热平衡过程。,反偏产生电流第八章 pn结二极管30对于反偏pn结,认为空间,第八章 pn结二极管,31,当空间电荷区中电子-空穴对产生之后,立即被耗尽区中电场拉向两侧,形成pn结中的反偏产生电流,这个反偏产生电流与理想反偏饱和电流将构成pn结总的反向饱和

14、电流。,根据前面的复合率公式,计算反偏产生电流的密度。假设Et=EFi,则n=p=ni,因此由式(6.103)、(6.104)中寿命的定义,则,第八章 pn结二极管31当空间电荷区中电子-空穴对产生之后,,第八章 pn结二极管,32,定义载流子的平均寿命:0=(p0+n0)/2,则负复合率即产生率,因此G为空间电荷区内电子与空穴的产生率。由下式可确定产生电流的密度:假设空间电荷区内的产生电流为恒定值,则总反偏电流密度为理想反向饱和电流密度与反向产生电流密度的和,即JS与反偏电压VR无关,但Jgen则是耗尽区宽度W的函数,而W又是VR的函数。因此,实际的反偏电流密度与VR有关。,第八章 pn结二

15、极管32定义载流子的平均寿命:0=(p0,第八章 pn结二极管,33,反偏pn结耗尽区中,电子和空穴的浓度基本为零,而正偏pn结中,电子和空穴要通过空间电荷区实现少子注入,因此在空间电荷区中会存在一定的过剩电子和过剩空穴,这些过剩电子和过剩空穴之间就会发生复合,形成耗尽区复合电流。,正偏复合电流,利用平均寿命公式,复合率公式改写为,右图为正偏pn结的能带图,图中给出了本征费米能级以及电子和空穴的准费米能级位置。,第八章 pn结二极管33反偏pn结耗尽区中,电子和空穴的浓度,第八章 pn结二极管,34,按照第6章中有关准费米能级的定义,有:其中,EFn和EFp分别是电子和空穴的准费米能级。由上图

16、可知其中,Va为外加正偏电压值。假设Et=EFi,则n=p=ni。在空间电荷区的中心,有此时,n、p的表达式改写为又设n0=p0=0,则复合率表达式可写为,第八章 pn结二极管34按照第6章中有关准费米能级的定义,有,第八章 pn结二极管,35,Rmax为正偏pn结中心处的电子与空穴的最大复合率。若VakT/e,则,复合电流密度可由下式求得,空间电荷区内的复合率并不是常数,但由于已计算出空间电荷区中心处的最大复合率,则,第八章 pn结二极管35Rmax为正偏pn结中心处的电子与空,第八章 pn结二极管,36,由于0不是一个确定的参数,因此习惯上令x=W。因此,n结中总正偏电流密度是复合电流密度

17、与理想扩散电流密度之和。空间电荷区中存在载流子复合时,由p型区中注入过来的空穴数目必须增加,这样才能维持中性n型区中少子空穴的浓度分布。,少子空穴在中性n型区中的分布,第八章 pn结二极管36由于0不是一个确定的参数,因此习惯,第八章 pn结二极管,37,总正偏电流密度为复合电流密度与扩散电流密度,即,其中,,对上述两式分别求对数可得:,由右图可见:电流密度较低时,正偏pn结中以空间电荷区复合电流为主;电流密度较高时,以理想pn结的扩散电流为主。,第八章 pn结二极管37总正偏电流密度为复合电流密度与扩散电,第八章 pn结二极管,38,(2)大注入随着正偏电压的升高,注入的少子浓度开始升高,甚

18、至变得比多子浓度还要大。由式(8.18)可知大注入情况下,nn0及pp0,所以上式可近似为由于n=p,所以二极管电流与过剩载流子浓度成正比,所以,第八章 pn结二极管38(2)大注入,第八章 pn结二极管,39,右图绘制出了从低偏压到高偏压情况时的二极管正偏电流曲线。低偏压时,复合效应;高偏压时,大注入效应。,第八章 pn结二极管39右图绘制出了从低偏压到高偏压情况时的,第八章 pn结二极管,40,8.3 pn结的小信号模型,某静态工作点Q附近,其增量电导为:,(1)扩散电阻二极管的电流可表示为:,前面讨论的是pn结二极管的直流特性,实际应用中关心的是其小信号等效电路模型。,第八章 pn结二极

19、管408.3 pn结的小信号模型某静态工作,第八章 pn结二极管,41,其倒数定义为二极管在静态工作点附近的增量电阻,即:,如果二极管外加的正向偏置电压足够大,则电流方程中的(-1)项可以忽略,因此其增量电导为:,相应地其小信号的增量电阻为:,上述小信号增量电阻也称为扩散电阻。,第八章 pn结二极管41其倒数定义为二极管在静态工作点附近的,第八章 pn结二极管,42,当pn结处于正偏时,同样也会表现出一种电容效应。,可见,正偏电压Va随时间变化,因此注入的少子浓度也随时间而不断变化。,(2)小信号导纳,如图所示,pn结正偏直流电压Vdc上同时又叠加一很小的正弦交流电压,则总正偏电压可表示为:,

20、第八章 pn结二极管42当pn结处于正偏时,同样也会表现出一,第八章 pn结二极管,43,以空穴由p型区注入n型区为例,在t0、t1、t2三个时刻,n型区一侧空间电荷区边界处少子空穴的浓度分别如下图所示。由图可见,空间电荷区边界处少子空穴浓度也在直流稳态基础上叠加一个随时间变化的交流分量。,由前面分析可知,空穴从耗尽区边界处开始不断地向n型区中扩散,并在n型区中与多子电子相复合。,第八章 pn结二极管43以空穴由p型区注入n型区为例,在t0,第八章 pn结二极管,44,假设交流电压信号的周期远大于过剩载流子往n型区中扩散所需的时间,因此空穴浓度在n型区中随空间分布可以近似为一种稳态分布。,这种

21、n型区空穴与p型区电子的充、放电过程产生的电容效应,称为扩散电容(Cd)。其物理形成机制与第七章中讨论的势垒电容有很大不同。正偏pn结扩散电容要比其势垒电容大得多。,阴影面积表示的是在交流电压的周期内轮流充、放电的电荷Q,第八章 pn结二极管44假设交流电压信号的周期远大于过剩载流,第八章 pn结二极管,45,n结二极管的小信号等效电路模型可根据其正偏下的小信号导纳公式得到:,等效电路如下图所示:在此基础上,还需加上耗尽层势垒电容的影响,该电容与扩散电容和扩散电阻相并联。另外,还须考虑pn结两侧n型中性区和p型中性区的串联电阻rs。,(3)等效电路,第八章 pn结二极管45pn结二极管的小信号

22、等效电路模型可根,第八章 pn结二极管,46,设pn结二极管两端外加电压为Vapp,真正降在pn结耗尽区两侧的电压为Va,则有,其中,Va和I之间满足:,第八章 pn结二极管46设pn结二极管两端外加电压为Vapp,第八章 pn结二极管,47,一个实际pn结二极管正偏下的I-V特性,串联电阻在小电流情况下基本可忽略。当外加正偏电压较大而使得正偏pn结电流也比较大时,串联电阻的影响就变得十分明显,这样就使得pn结二极管的特性与正常的指数关系有很大偏离。,第八章 pn结二极管47一个实际pn结二极管正偏下的I-V特,第八章 pn结二极管,48,小结,理想电流-电压关系:正向扩散电流,反向饱和电流非理想情况:反偏产生电流、正偏复合电流小信号模型:扩散电阻、扩散电容,第八章 pn结二极管48小结理想电流-电压关系:正向扩散电流,第八章 pn结二极管,49,作业,8.26 Si,第八章 pn结二极管49作业8.26 Si,第八章 pn结二极管,谢 谢!,第八章 pn结二极管谢 谢!,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号