《人教版八年级下中点四边形PPT课件.ppt》由会员分享,可在线阅读,更多相关《人教版八年级下中点四边形PPT课件.ppt(24页珍藏版)》请在三一办公上搜索。
1、四边形之间的关系,等腰梯形,直角梯形,两 腰 相 等,有一个角是直角,三角形 的性质,定理:三角形的中位线平行于第三边,且等于第三边的一半.,这个定理提供了证明线段平行以及线段成倍分关系的根据.,DE是ABC的中位线,DEBC,中位线,E,F,G,H,中点四边形的定义,顺次连接四边形各边中点所得的四边形叫做中点四边形。,A,B,C,D,探究一:凸四边形的中点四边形,顺次连接任意四边形各边中点所成的四边形是什么形?,观察猜想并证明,已知:如图,点E、F、G、H分别是四边形ABCD各边中点。,求证:四边形EFGH为平行四边形。,证明:连接AC E、F是AB、BC边中点EFAC且EF AC同理:HG
2、 AC且HG ACEF HG且EF HG四边形EFGH为平行四边形。,E,F,G,H,请同学们:看一看、猜一猜并证一证,A,B,C,D,(一组对边平行且相等的四边形是平行四边形),顺次连接 各边中点所成的四边形,任意四边形,平行四边形,是平行四边形。,也是平行四边形吗?,A,B,C,H,E,D,G,F,那么:,矩形呢?,有没有更特殊?,B,D,c,E,H,G,F,A,其它各种四边形的中点四边形边是何种四边形呢?先观察并猜一猜,再证明.,菱形,矩形,正方形,AC=BD,AC=BD,顺次连接任意四边形的各边中点四边形得_;顺次连接平行四边形的各边中点得_;顺次连接矩形的各边中点的得_;顺次连接菱形
3、的各边中点得_;顺次连接正方形的各边中点得_;顺次连接对角线相等的四边形的各边中点得_;顺次连接对角线垂直的四边形的各边中点四边形得 _;顺次连接对角线垂直且相等的四边形的各边中点得_,平行四边形,平行四边形,矩形,菱形,菱形,正方形,矩形,正方形,思考:结合刚才的证明过程,小组讨论凸四边形的中点四边形的形状与原四边形的什么有着密切的关系?,结论:,(1)凸四边形中点四边形的形状与原四边形的 有密切关系;(2)只要原四边形的两条对角线 ,就能使中点四边形是菱形;(3)只要原四边形的两条对角线 ,就能使中点四边形是矩形;(4)要使中点四边形是正方形,原四边形要符合的条件是 。,对角线,相等,互相
4、垂直,相等且互相垂直,矩形,菱形,(3)那么四边形: ( )形,面积是多少?,中点四边形的面积与原四边形的面积之比为多少?,如图:点E、F、G、H分别是线段AB、BC、CD、AD的中点,则四边形EFGH是什么图形?并说明理由。,大显身手,这一节课你学到了什么?,1.中点四边形的定义;2.中点四边形的形状与原四边形的对角线的关系。3.中点四边形的面积与原四边形的面积之比为多少?,探究中点四边形,授课教师:靖宇县第七中学 侯秀莉,课题:,小组合作探究:,任意四边形的中点四边形都是_;平行四边形的中点四边形是_;矩形的中点四边形是_;菱形的中点四边形是_;正方形的中点四边形是_;对角线相等的四边形的
5、中点四边形是_;对角线垂直的四边形的中点四边形是_;对角线垂直且相等的四边形的中点四边形是_。,平行四边形,平行四边形,探究二:凹四边形或折四边形的中点四边形,思考:结合刚才的证明过程,小组讨论凹四边形或折四边形的中点四边形的形状与原四边形的对角线的关系是否仍然成立?,超越自我 :凹四边形ABCD,E.F.G.H分别为AB.BC.CD.DA边中点,问:四边形EFGH的形状?,变式 : 点O是ABC所在平面内一动点,连接OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连接,如果DEFG能构成四边形:(1)如图,当O点在ABC内部时,证明四边形DEFG是平行四边形;,(2)当O点移动到ABC外部时,(1)的结论是否还成立?说明理由;,图,(3)若四边形DEFG为矩形,O点所在位置应满足什么条件?试说明理由,图,