原子吸收光谱的产生ppt课件.ppt

上传人:牧羊曲112 文档编号:1406945 上传时间:2022-11-20 格式:PPT 页数:108 大小:1.90MB
返回 下载 相关 举报
原子吸收光谱的产生ppt课件.ppt_第1页
第1页 / 共108页
原子吸收光谱的产生ppt课件.ppt_第2页
第2页 / 共108页
原子吸收光谱的产生ppt课件.ppt_第3页
第3页 / 共108页
原子吸收光谱的产生ppt课件.ppt_第4页
第4页 / 共108页
原子吸收光谱的产生ppt课件.ppt_第5页
第5页 / 共108页
点击查看更多>>
资源描述

《原子吸收光谱的产生ppt课件.ppt》由会员分享,可在线阅读,更多相关《原子吸收光谱的产生ppt课件.ppt(108页珍藏版)》请在三一办公上搜索。

1、原子吸收光谱法Atomic Absorption Spectrometry (AAS),2022年11月20日星期日,邢 志清华大学分析中心地址:清华大学理科楼4205电话:62781687Email: ,实验技术,一、历史 原子吸收光谱法是一种基于待测基态原子对特征谱线的吸收而建立的一种分析方法。这一方法的发展经历了3个发展阶段:1、原子吸收现象的发现1802年Wollaston发现太阳光谱的暗线;1859年Kirchhoff和Bunson解释了暗线产生的原因;,概 述,暗线是由于大气层中的钠原子对太阳光选择性吸收的结果:,2、空心阴极灯的发明 1955年Walsh发表了一篇论文“Appli

2、cation of atomic absorption spectrometry to analytical chemistry”,解决了原子吸收光谱的光源问题,50年代末 Varian 和 PerkinElmer公司先后推出了原子吸收商品仪器。,Varian Model AA-4 Circa 1966,1952-53瓦里安终生顾问、澳洲人 Alan Walsh先生发表了原子吸收分析的突破性论文1960世界上第一台商品化的原子吸收问世1966第一次采用氧化亚氮/乙炔火焰原子吸收1971世界上第一台纵向加热石墨炉1971首先发展Zeeman 背景校正技术,并获专利1981 首家实现操作自动化19

3、84第一台连续氢化物发生器1990推出世界上最先进的Mark VI 火焰燃烧头1992Varian-OSI 获得 ISO-9001 质量认证证书1995独家推出在线火焰自动进样器(SIPS8)1998世界上第一台快速分析火焰原子吸收220FS2002世界上第一套实现火焰和石墨炉同时分析的原子吸收光谱仪,Varian AAS 的发展史,1、灵敏度高(火焰法:1 ng/ml;石 墨炉:100-0.01 pg )2、准确度好(火焰法:RSD 1%,石墨炉 :3-5%)3、选择性高(可测元素达70个,相互干扰很小)缺点:不能多元素同时分析,二、原子吸收光谱法的特点,实验技术,原子吸收是一个受激吸收跃迁

4、的过程。当有辐射通过自由原子蒸气,且入射辐射的频率等于原子中外层电子由基态跃迁到较高能态所需能量的频率时,原子就产生共振吸收。原子吸收分光光度法就是根据物质产生的原子蒸气对特定波长光的吸收作用来进行定量分析的。 原子吸收光的波长通常在紫外和可见区。,共振吸收,一、原子吸收光谱的产生,当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,使透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的原子浓度成正比。当实验条件一定时,蒸气相中的原子浓度与试样中该元素的含量(浓度)成正比。因此,入射辐射减弱的程度与试样中该元素的含量(浓度)成正比。其定量关系式是:,式中:A吸

5、光度; I0入射辐射强度; I透过原子蒸气吸收层的透射辐射强度; K吸收系数; c样品溶液中被测元素的浓度; L原子吸收层的厚度。,当在一定条件下达到热平衡后,处在激发态和基态的原子数的比值遵循Boltzman分布:,Ni, N0 激发态和基态原子数gi, g0 激发态和基态统计权重K Boltzman常数T 热力学温度Ei 激发能,二、原子吸收线的轮廓,2. Dopple 变宽 由于原子的热运动而引起的变宽,D=,K,Boltzmann常数,光速,C,m,原子质量,若用M(原子量)代替m, 则:,m=1.660510-24M,3、压力变宽 压力变宽指压力增大后,原子之间相互碰撞引起的变宽。分

6、为: Lorentz 变宽:指被测元素原子和其它粒子碰撞引起的变宽( 10-3 nm ); Holtsmart 变宽:指同种原子碰撞引起的变宽。在原子吸收法中可忽略。 4、原子吸收线的轮廓 综合上述因素,实际原子吸收线的宽度约为10-3 nm 数量级,三、原子吸收光谱的测量1、积分吸收 吸光原子数 No 越多,吸光曲线面积越大(峰越高),因此,理论上积分吸收与 No 呈正比:,1 2 3 4 5 6 7 8 9 10,10-3 nm, (10-3 nm),需要一个分光系统,谱带宽度为 0.0001 nm, 且连续可调,K ,0.0001 nm,关键性难题 通常光栅可分开0.1 nm,要分开0.

7、01 nm 的两束光需要很昂贵的光栅;要分开两束波长相差0.0001 nm 的光,目前技术上 仍难以实现; 此外,即使光栅满足了要求,分出的光也太弱,难以用于实际测量。,根据吸收定律,有: I = Io e-K L,当在原子吸收线中心频率附近一定频率范围测量时,则, ,e-k L I d , I d ,= lg,= 0.43 ko L,若令: k = ko,A = K C,原子吸收光谱分析的基本关系式:,吸光度,常数 浓度,A= lg,IoI,值得指出的是,上式假定 No = C(1)由于基体成分的影响和化学干扰影响原子化过程,上式不成立,导致曲线弯曲;(2)对易电离的物质,温度较高时Ni很大

8、,Boltzmann分布中Ni/No增大,影响曲线弯曲;(3)发射光源的辐射半宽度要小于吸收线宽度,因此光源温度不能高。,A,C,0,思考题,如果光源辐射宽度比原子吸收线宽,原子吸收测量能否进行?你已经知道了原子吸收光谱分析的原理,你认为要用此原理实现原子浓度的测量方法,需要那些仪器组件?,为什么要采用锐线光源?,实验技术,原子吸收光谱分析的仪器包括四大部分 光源 原子化器 单色器 检测器,锐线 (发射线半宽 吸收线半宽)高强度稳定 (30分钟漂移不超过1%)背景低 (低于特征共振辐射强度的1%),一、光源光源的作用是发射被测元素的特征共振辐射对光源的基本要求是:,空心阴极灯的发光是辉光放电,

9、放电集中在阴极空腔内。将空心阴极灯放电管的电极分别接在电源的正负极上,并在两极之间加以几百伏电压后,在电场的作用下,从阴极发出的电子向阳极作加速运动,电子在运动中经常与载气原子发生非弹性碰撞,产生能量交换,载气原子引起电离并放出二次电子,使电子与正离子数目增加。正离子从电场中获得能量并向阴极作加速运动,当正离子的动能大于金属阴极表面的晶格能时,正离子碰撞在金属阴极表面就可以将原子从晶格中溅射出来。阴极表面受热,也要导致其表面元素的热蒸发。溅射与蒸发出来的原子进入空腔内,再与电子、原子、离子等发生非弹性碰撞而受到激发,发射出相应元素的特征的共振辐射。,高温 温度梯度 低温,自吸 自蚀,o,o,o

10、,原子吸收分析中需要研究的条件之一:,灯电流的选择,二、原子化器 原子化器的功能是提供能量,使试样干燥、蒸发和原子化。,两种类型,火焰原子化石墨炉原子化,1、火焰原子化 由火焰提供能量,在火焰原子化器中实现被测元素原子化。 对火焰的的基本要求是:,温度高稳定背景发射噪声低燃烧安全,雾化器通过毛细管将溶液吸入,液流通过文丘里管撞在撞击球上,将溶液打碎,成为不同大小的雾滴。雾化室将大的雾滴滤除,剩下的小雾滴与火焰气体混合。雾化室对于雾化气与燃气混合起到十分关键的作用。然后,混合气到达燃烧头。为得到最大灵敏度,使空芯阴极灯所发出的光尽可能多地通过火焰是十分必要的。因此如要得到某种元素的 最高灵敏度,

11、必须调整燃烧头的位置是该被分析元素的自由原子在火焰中最密集的部分与光路重合。所有原子吸收仪都有调节燃烧头高度、前后及角度的机构,通过调整可得到最大吸光度。在火焰底部,溶剂被蒸发掉,样品成为非常小的固体颗粒,进而形成基态自由原子出现在光路中。,火焰原子化系统将被分析溶液转化成自由基态原子并置于光路中。通常的方法是用雾化器将样品雾化,用雾化室将较大的雾滴滤除掉。,直接燃烧型:,助燃气燃气,雾化效率低背景影响大,预混合型原子化器,燃气,助燃气,试样,预混合室,燃烧器,废液排放口,雾化器,雾化器混合室燃烧器,(1)气溶胶产生 雾化过程的关键是要产生直径足够小的气溶胶。对气动雾化器,产生气溶胶的平均直径

12、与下列因素有关:,当液体流量小,Qg/QL 5000,第一项起支配作用当液体流量大,Qg/QL 5000,第二项起支配作用平均直径均在10-20 m 之间。,据实验: do 30 m 在火焰中通过 30 mm 才脱溶剂因此应创造条件,产生直径小于10 m 的气溶胶,IO,超声雾化产生的气溶胶平均直径分布范围窄,直径小,雾化效率高。但记忆效应大。 超声雾化的气溶胶直径计算公式为:,F 超声频率,火焰原子吸收的灵敏度目前受雾化效率制约,因为目前商品雾化器的雾化效率小于15%。,(2)燃烧过程两个关键因素: 燃烧温度 火焰氧化-还原性,燃烧温度由火焰种类决定:,燃气助燃气温度(K)乙炔空气2500笑

13、气3000氢气空气2300,火焰的氧化-还原性火焰的氧化-还原性与火焰组成有关化学计量火焰贫燃火焰富燃火焰燃气=助燃气燃气助燃气中性火焰氧化性火焰还原性火焰温度 中温度 低温度 高适于多种元素适于易电离元素适于难解离氧化物,火焰的氧化-还原性还与火焰高度有关 火焰高度增加,氧化性增加火焰高度对不同稳定性氧化物的影响,原子吸收分析中需要研究的条件之二:火焰原子化条件的选择火焰类型燃气-助燃气比例测量高度,2、石墨炉电热原子化,6mm 4mm,30 mm,石墨炉外型,常用的非火焰原子化器是管式石墨炉原子化器,管式石墨炉是用石墨管做成,是将样品用进样器定量注入到石墨管中,并以石墨管作为电阻发热体,通

14、电后迅速升温,使试样达到原子化的目的。它由加热电源、保护气控制系统和石墨管状炉组成。外电源加于石墨管两端,供给原子化器能量,电流通过石墨管产生高达3000的温度,使置于石墨管中被测元素变为基态原子蒸气。保护气控制系统是控制保护气的,仪器启动,保护气Ar气流通,空烧完毕,切断Ar气流。外气路中的Ar气沿石墨管外壁流动,以保护石墨管不被烧蚀,内路的Ar气从管两端流向管中心,由管中心孔流出,以有效地除去在干燥和灰化过程中产生的基体蒸气,同时保护已经原子化了的原子不再被氧化。在原子化阶段,停止通气,以延长原子在吸收区内的平均停留时间,避免对原子蒸气的稀释。,在石墨炉原子化系统中,火焰被置于氩气环境下的

15、电加热石墨管所代替。氩气可防止石 墨管在高温状态下迅速氧化并在干燥、灰化阶段将基体组份及其它干扰物质从光路中除 去。少量样品(1至70 mL, 通常在 20 mL左右)被加入热解涂层石墨管中。石墨管上的热解涂层可有效防止石墨管的氧化,从 而延长石墨管的使用寿命。同时,涂层也可防止样品侵入石墨管从而提高灵敏度和重复 性。 石墨管被电流加热,电流的大小由可编程控制电路控制,从而在加热过程中可按 一系列升温步骤对石墨管中的样品进行加热,达到除去溶剂和大多数基体组份然后将样 品原子化产生基态自由原子。分子的分解情况取决于原子化温度、加热速率及热石墨管 管壁周围环境等因素。 石墨管中的样品得以完全原子化

16、,并在光路中滞留较长时间(相对火焰法而言)。因而 该方法可是灵敏度大大提高,使检出限降低到ppb级。主要原因是在测量时,溶剂不复存在,也没有火焰原子化系统那样,样品被气体稀释的情况出现。虽然基态自由原子仍然 会被干扰,但却呈现出与火焰原子化系统所不同的特性。通过正确地选择分析条件、化 学基体改进剂更易于控制石墨炉原子化过程。由于采用石墨炉技术可对众多基体类型的 样品进行直接分析,从而可减少样品制备过程所带来的误差。同时,石墨炉技术可实现 无人监管全自动分析。,石墨炉的优点是:试样原子化效率高,不被稀释,原子在吸收区域平均停留时间长,灵敏度比火焰法高。石墨炉加热后,由于有大量碳存在,还原气氛强;

17、石墨炉的温度可调,如有低温蒸发干扰元素,可以在原子化温度前分馏除去。样品用量少,并且可以直接固体进样。原子化温度可以自由调节,因此可以根据元素的原子化温度不同,选择控制温度。石墨炉的缺点是:装置复杂。样品基体蒸发时,可能造成较大的分子吸收,石墨管本身的氧化也会产生分子吸收,石墨管等固体粒子还会使光散射,背景吸收大,要使用背景校正器校正。管壁能辐射较强的连续光,噪声大。因为石墨管本身的温度不均匀,所以要严格控制加入样品的位置,否则测定重现性不好,精度差。,平台的作用是推迟样品原子化的时间,使原子化在石墨管达到稳定高温状态时发生。其 好处是在较高温度下,可减少干扰及背景。,热解平台是一片固体热解涂

18、层石墨,中央有一可盛40mL样品的凹槽。平台可安装在石墨管中。石墨管与平台只在平台边沿部分与石墨管管壁保持最少的接触点。,但平台的使用有一定局限性,一是最大进样量只能到40mL;再者,平台的安装,略微降低了光通量因此需要仔细调整石墨炉炉体的位置,尽量是光通量最大;编程时温度需 略微高一些,同时所得结果的托尾现象也较严重。因此,在管壁法能满足要求时应尽量 采用管壁法。,热解石墨涂层,无涂层管,热解涂层,涂层平台,石墨炉特性 :(1)自由原子在吸收区停留时间长,达火焰的103倍(2)原子化在Ar气气氛中进行,有利于氧化物分解(3)原子化效率高,检出限比火焰低(4)样品量小缺点:基体干扰管壁的时间不

19、等温性管内的空间不等温性实现等温原子化的措施:(1)采用里沃夫平台,Atomize,Ash,Dry,Time,Protective Sheath GasPyrolytic Graphite Coating,GTA-100 石墨炉结构示意图,水冷,气体出口,光路,密封的石英窗,惰性气体,密封,PSD石墨炉自动进样器,(2)提高升温速率石墨炉原子化采用程序升温过程,程序干燥灰化原子化清除温度稍高于沸点800度左右2500度左右高于原子化温度200度左右目的除去溶剂除去易挥发测量清除残留物基体有机物,T,t,干燥,灰化,原子化,清除,石墨炉程序通常有下列三个步骤: 干燥:当样品被注入到石墨管中后,石

20、墨管被升温至溶剂的沸点附近(略低于沸点通常为 80 200oC)。溶剂被蒸发,样品在石墨管管壁(或平台)表面形成一固体薄膜。 灰化:在该步骤中,温度升到一定温度,尽可能多地除掉基 体物质,同时不能使被分析元 素受到损失。灰化 温度通常在350 - 1600oC。灰化阶段,固体物质被分解,使被分析元素成为难熔组份,如氧化物。 原子化: 第三步是原子化阶段,温度从灰化温度迅速升到原子化高温状态,使灰化阶段所剩下的物质分解、蒸发,形成自由原子基态云,出现在光路中。原子化温度的高低,取决于被 分析元素的挥发性,通常在1800oC(钙)到3000oC(硼)之间。,石墨炉升温程序中干燥阶段的参数设置是否合

21、理,对是否能够得到最佳分析信号及最好精度,是至关重要的。在分析过程中,对不同特性的样品,可能需要通过试验观察不同干燥时间及温度下所得结果,来找到最佳参数。样品必须恒定地沉积在热解石墨管或石墨管平台上,得以充分干燥而又不损失或浸入石墨管的石墨层内,因此作为方法研究的一个重要环节就是观察样品的干燥情况,以正确地设置干燥参数。 采用石墨炉方法分析样品比用火焰法要花费更长时间,且所能分析的元素数量也较火焰法少。但由于石墨炉法可大大提高元素分析的灵敏度,因而应用领域广泛。,原子吸收分析中需要研究的条件之三:石墨炉原子化条件的选择灰化、原子化 条件的选择,思考题原子吸收空心阴极灯发射的是宽度很窄的锐线,也

22、是待测元素的特征谱线,因此分光系统可以省略,这种说法对不对?,3、低温原子化 低温原子化是利用某些元素自身或其氢化物在低温下的易挥发性实现原子化的。例如AsO33- +BH4- + H+ AsH3,AsH3,+,_,三 、分光器,作 用将所需要的共振吸收线分离出来 部 件狭 缝、反射镜、色散元件 要 求能分辨开 Ni 三线Ni 230.003 nmNi 231.603 nmNi 231.096 nm,1.600 nm0.507 nm,四、检测系统作用 检测光信号的强度部件 光电倍增管要求 足够的光谱灵敏度,光谱范围打拿极数工作电压,日光,思考题:(1)光电倍增管接受光源信号的同时,也接收日光信

23、号,怎样区分这两种信号?(2)光电倍增管检测待测原子吸收信号的同时,也检测火焰中分子发射信号,怎样区分这两种信号?,光源调制:,因此,采用 脉冲光源交流放大器可以消除直流发射线的影响。,实验技术,物理干扰化学干扰电离干扰光谱干扰,一、物理干扰指试样在蒸发和原子化过程中,由于其物理特性如黏度、表面张力、密度等变化引起的原子吸收强度下降的效应。它是非选择性干扰。,消除物理干扰的方法:1、配置相似组成的标准样品;2、采用标准加入法:,C0C1C2C3C4C5,A,C0 C1 C2 C3 C4C5,Cx,二、化学干扰 液相或气相中被测原子与干扰物质间相成热力学稳定的化合物,影响原子化过程。化学干扰是一

24、种选择性干扰 。,包括: 分子蒸发 待测元素形成易挥发卤化物和某些氧化物,在灰化温度下蒸发损失; 形成难离解的化合物(氧化物、炭化物、磷化物等)氧化物 较难原子化的元素:B、Ti、Zr、V、Mo、Ru、Ir、Sc、Y、La、Ce、Pr、Nd、U 很难原子化的元素: Os、Re、Nd、Ta、Hf、W,炭化物Be、B、Al、Ti、Zr、V、W、Si、U 稀土等形成难挥发炭化物磷化物 Ca3PO4 等,消除化学干扰的方法:高温原子化 Ca3PO4加入释放剂 La、Sr释放Ca3PO4加入保护剂 8-羟基喹啉加入基体改进剂 NaCl + NH4NO3 = NaNO3 + NH4Cl,通常可以采用几种方

25、法来克服或抑制化学干扰,如采用化学分离、使用高温火焰、在试液(及标液)中添加一种释放剂、加入保护剂、使用基体改进剂等。在以上这些方法中,有时可以单独使用一种方法,而有时需要几种方法联用。,化学干扰不只是决定于被测元素及其伴随物的互相影响,而且与雾化器的性能,燃烧器的类型、火焰的性质、以及观测点的位置都有关系,所以原子吸收分析中的干扰对条件的依赖性很强,一定要具体情况具体分析,不能一概而论。,三、电离干扰 指高温电离而使基态原子数减少,引起原子吸收信号下降的现象。被测元素浓度越大,电离干扰越小。,消除办法:加入消电离剂。 消电离剂为碱金属元素。例如Ca测定在高温下产生电离现象,加入KCl可消除:

26、K K+ + eCa+ + e Ca,四、光谱干扰,吸收线重叠光谱通带内存在非吸收线原子化器内直流发射干扰背景吸收(分子吸收、光散射),当采用锐线光源和交流调制技术时,前三种因素一般不予考虑,主要考虑分子吸收和光散射的影响,它们是形成光谱背景的主要因素。 光散射-是由于原子化过程中产生的固体颗粒对光的散射造成的; 分子吸收-是由于原子化过程中生成的氧化物及盐类对辐射的吸收造成的。,NaI,NaCl,NaF,200250300350400,波长 nm,A,五、背景校正的方法,A,AB,AT = A + ABA = AT - AB,1、邻近非共振线校正法,分析线,非共振线,2、氘灯扣除背景法,氘灯

27、AD = AB空心阴极灯AT = A + AB净原子吸收A = AT - AD,2 nm,空心阴极灯,原子化器,棱镜,光电管,氘灯,氘灯扣除背景光路图,3、Zeeman 效应扣除背景法,-,+,平行磁场,垂直磁场,垂直磁场,塞曼扣背景优点其最主要的一个优点是背景的扣除准确地在被分析元素的共振谱线处进行,且只需一个 光源。 波长覆盖整个波长范围; 可准确扣除结构背景; 可 扣 除某些谱线干扰; 背景校正速度快,提高了扣背景的准确性; 可扣除高背景吸收; 塞曼扣背景也存在两个缺点: 校正曲线向下翻转 在较高浓度时,校正曲线通常是趋于某一极限值。但在塞曼系统中,校正曲线(采用峰 高法)可能出现向下翻

28、转的情况(依据波长不同弯曲程度不一),这样就会有两个浓度 值对应同一个吸光度值的现象发生。,校正曲线向下翻转现象为防止此类情况的发生,在实践中,需对每种元素在不同的波长条件下所允许的最大吸光度值作出限定,所有测量必须在该值以下进行。,实验技术,样品制备第一步是取样,取样一定要具有代表性。取样量大小要适当,取样量过小,不能保证必要的测定精度和灵敏度,取样量太大,增加了工作量和实际的消耗量。取样量的大小取决于试样中被测元素的含量、分析方法和所要求的测量精度。 在样品制备过程中的一个重要的问题就是要防止玷污。污染是限制灵敏度和检出限的重要原因之一,主要污染来源是水、大气、容器和所用的试剂。即使最纯的

29、离子交换水,仍含有10-710-9%的杂质。在普通的化学实验室中,空气中常含有Fe、Cu、Ga、Mg、Si等元素,一般来说,大气污染是很难校正的。容器污染程度视其质料、经历而不同,且随温度升高而增大。对于容器的选择要根据测定的要求而定,容器必需洗净,对于不同容器,应采取各自合适的洗涤方法。 避免损失是样品制备过程中的又一个重要问题。浓度很低(小于1g/mL)的溶液,由于吸附等原因,一般说来是不稳定的,不能作为储备溶液,使用时间最好不要超过12天。作为储备溶液,应该配置浓度较大(例如1000g/mL以上的溶液)。无机储备液或试样溶液置放在聚乙烯容器里,维持必要的酸度,保存在清洁、低温、阴暗的地方

30、。有机溶液在储存过程中,应避免它与塑料、胶木瓶盖等直接接触。,1、样品制备,2、标准样品的配制,标准样品的组成要尽可能接近未知试样的组成。溶液中总含盐量对雾珠的形成和蒸发速度都有影响,其影响大小与盐类性质、含量、火焰温度、雾珠大小有关,因此当含盐量在0.1%以上时,在标准样品中也应加入等量的同一盐类,以期在喷雾时和在火焰中发生的过程相似。在石墨炉高温原子化时,样品中痕量元素与基体元素的含量比对测定的灵敏度和检出限有重要影响,因此,对样品中的含盐量也应控制,一般希望痕量元素与基体元素的含量比能达到0.1g /g。,标准溶液的浓度下限,取决于检出限。从测定精度的观点出发,合适的浓度范围应该是在能产

31、生0.20.8单位吸光度或1565透过率之间的浓度。,3、样品预处理,原子吸收光谱分析通常是溶液进样,被测样品需事先转化为溶液样品。预处理方法与通常的化学分析相同,要求试样分解完全,在分解过程中不能引入沾污和造成待测组分的损失,所用试剂及反应产物对后续测定应无干扰。 分解试样最常用的方法是用酸溶解和碱熔融,近年来微波溶样法获得了广泛的应用。通常采用稀酸、浓酸或混合酸处理,酸不溶物质采用熔融法。无机试样大都采用此类方法。有机试样通常先进行灰化处理,以除去有机物基体。灰化处理主要分成干法灰化和湿法消化两种。对于易挥发性元素(如Hg、As、Gd、Pb、Sb、Se等),不能采用干法灰化,因为这些元素在

32、灰化过程中损失严重。灰化后的残留物再用合适的酸溶解。,干法灰化:是在较高的温度下,用氧来氧化样品。准确称取一定量的样品,放在石英坩埚或铂坩埚中,于80150低温加热赶去大量有机物,然后放于高温炉中,加热至450550进行灰化处理。冷却后,再将灰分用HNO3,HCl或其他溶剂进行溶解,如有必要,则加热溶液以使残渣溶解完全。转移到容量瓶中,稀释溶液至刻度。 湿法消化法是样品在升温下用合适的酸加以氧化。最常用的是盐酸+硝酸法、硝酸+高氯酸法或硫酸+硝酸等混合酸法。若用微波溶样技术,可将样品放在聚四氟乙烯焖罐中,于专用微波炉中加热消化样品。至于采用何种混酸消化样品,需视样品类型而定。,关于塑料类和纺织

33、类样品的溶解,聚苯乙烯、乙醇纤维,乙醇丁基纤维,可溶于甲基异丁基酮。聚丙烯酯可溶于二甲基甲酰胺。聚碳酸酯、聚氯乙烯可溶于环己酮。聚酰胺(尼龙)可溶于甲醇,聚酯也可溶于甲醇。羊毛可以溶于5%NaOH中。棉花和纤维可溶于12%的硫酸中。,4、测定条件的选择,在进行原子吸收光谱测定时,为了获得灵敏、重现性好和准确的结果,应对测定条件进行优选。,吸收线的选择通带宽度选择 空心阴极灯的工作电流 燃烧器高度调节 原子化条件选择 进样量的选择,吸收线的选择,每种元素都有若干条分析线,通常选择其中最灵敏线(共振吸收线)作为吸收线。但是,当测定元素的浓度很高,或是为了避免邻近光谱线的干扰等,可以选择次灵敏线(非

34、共振线)作为吸收线 。,原子吸收分光光度法中常用的分析线,通带宽度选择,狭缝宽度直接影响光谱通带宽度与检测器接受的能量。选择通带宽度是以吸收线附近无干扰谱线存在并能够分开最靠近的非共振线为原则,适当放宽狭缝宽度,以增加检测的能量,提高信噪比和测定的稳定性。过小的光谱通带使可利用的光强度减弱,不利于测定。合适的狭缝宽度由实验确定。测定每一种元素都需选择它合适的通带,对谱线复杂的元素如铁、钴、镍等就要采用较窄的通带,否则会使工作曲线线性范围变窄。以不引起吸光度减小的最大狭缝宽度,即为应选取的合适的狭缝宽度。,空心阴极灯的工作电流,空心阴极灯的发射特征与灯电流有,一般要预热1030分钟才能达到稳定的

35、输出。灯电流小,发射线半峰宽窄,放电不稳定,光谱输出强度小,灵敏度高。灯电流大,发射线强度大,发射谱线变宽,但谱线轮廓变坏,导致灵敏度下降信噪比大,灯寿命缩短。因此,必须选择合适的灯电流。选择灯电流的一般原则是,在保证有足够强且稳定的光强输出条件下,尽量使用较低的工作电流。通常以空心阴极灯上标明的最大灯电流的一半至三分之二为工作电流。,燃烧器高度调节,在火焰中进行原子化的过程是一种极为复杂的反应过程。不同元素在火焰中形成的基态原子的最佳浓度区域高度不同,因而灵敏度也不同,选择燃烧器高度以使光束从原子浓度最大的区域通过。燃烧器高度影响测定灵敏度、稳定性和干扰程度。一般地讲,约在燃烧器狭缝口上方2

36、5mm附近处火焰具有最大的基态原子密度,灵敏度最高。但对于不同测定元素和不同性质的火焰而有所不同。最佳的燃烧器高度,可通过绘制吸光度-燃烧器高度曲线来优选。,原子化条件选择,火焰中燃烧气体由燃气与助燃气混合组成。不同种类火焰,其性质各不相同,应该根据测定需要,选择合适种类的火焰,通常使用空气-乙炔气火焰。通过绘制吸光度-燃气、助燃气流量曲线,选出最佳的助燃气和燃气流量。一般空气-乙炔火焰的流量在3:1到4:1之间。贫燃火焰(助燃比1:46)为清晰不发亮兰焰,适于不易生成氧化物的元素的测定。富燃火焰(助燃比1.21.5:4)发亮,还原性比较强。适合于易生成氧化物的元素的测定。,在石墨炉原子化法中

37、,应合理选择干燥、灰化、原子化及除残温度与时间。 干燥条件直接影响分析结果的重现性。干燥温度应稍低于溶剂沸点,以防止试液飞溅,又应有较快的蒸干速度。条件选择是否得当可以用蒸馏水或者空白溶液进行检查。干燥时间可以调节,并和干燥温度相配合。,灰化阶段的作用是尽量使待测元素以相同的化学形态进入原子化阶段,除去基体和局外组分,减少基体对测定的干扰,它的另一个作用是减少原子化过程中的背景吸收。在保证被测元素没有损失的前提下应尽可能使用较高的灰化温度。一般来说,较低的灰化温度和较短的灰化时间有利于减少待测元素的损失。对中、高温元素,使用较高的灰化温度不易发生损失,而对低温元素,因为它较易损失,所以不能用提

38、高灰化温度的方法来降低干扰。,原子化温度的选择原则是,选用达到最大吸收信号的最低温度作为原子化温度,这样可以延长石墨管的使用寿命。但是原子化温度过低,除了造成峰值灵敏度降低外,重现性也将受到影响。原子化时间是应以保证完全原子化为准。 除残的目的是为了消除残留物产生的记忆效应,除残温度应高于原子化温度。 一些石墨管材料的纯度不够,特别是分析一些常见元素时,空白值较高。如果在测定前不进行热排除,即使不加样品,原子化阶段也会出现吸收信号,将影响测定。可以按通常加热程序进行“空烧”处理石墨管,“空烧”时的原子化温度比分析时使用的温度要高。,进样量的选择,试样的进样量一般在36mL/min较为适宜。进样

39、量过小,由于进入火焰的溶液太少,吸收信号弱,灵敏度低,不便测量;进样量过大,在火焰原子化法中,对火焰产生冷却效应,同时较大雾滴进入火焰,难以完全蒸发,原子化效率下降,灵敏度低。在石墨炉原子化法中,会增加除残的困难。在实际工作中,应根据吸光度随进样量的变化,以选择最佳进样量。,Thanks for your attention!,B威尔茨著,原子吸收光谱法,地质出版社,1989年。邓勃、宁永成、刘密新等编,仪器分析,清华大学出版社,1991年马怡载、何华昆、杨啸涛编著,石墨炉原子吸收分光光度法,原子能出版社,1988年。邓勃编著,原子吸收分光光度法,清华大学出版社,1981年郭德济、刘瑞华等编著,光谱分析法实验与习题,重庆大学出版社,1993年穆家鹏编译,原子吸收分析方法手册,原子能出版社,1989年原子吸收光谱分析编写组,原子吸收光谱分析,地质出版社,1979年 分析化学手册第二分册,化学工业出版社,1982年。 北京大学化学系分析化学教研室,基础分析化学实验,北京大学出版社,1993年赵文宽、张悟铭、王长发、周性尧等编著,仪器分析实验,高等教育出版社,1997年,参考文献,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号