进洞冻结加固施工方案.docx

上传人:牧羊曲112 文档编号:1995306 上传时间:2022-12-30 格式:DOCX 页数:32 大小:549.81KB
返回 下载 相关 举报
进洞冻结加固施工方案.docx_第1页
第1页 / 共32页
进洞冻结加固施工方案.docx_第2页
第2页 / 共32页
进洞冻结加固施工方案.docx_第3页
第3页 / 共32页
进洞冻结加固施工方案.docx_第4页
第4页 / 共32页
进洞冻结加固施工方案.docx_第5页
第5页 / 共32页
点击查看更多>>
资源描述

《进洞冻结加固施工方案.docx》由会员分享,可在线阅读,更多相关《进洞冻结加固施工方案.docx(32页珍藏版)》请在三一办公上搜索。

1、上海地铁11#号线济阳路站盾构进洞冻结加固方案上海轨道交通11号线济阳路站盾构进洞冻结加固施工方案 编制:史志明审核: 审定: 中煤第五建设公司上海分公司二一年九月十九日目 录一、编制总说明21.1、施组方案的选择依据和设计规范、技术标准21.2、冻结方案编制依据21.3、工程概况2二、冻结方案与冻结参数42.1.冻结方案的确定4三、施工工序及工期安排93.1施工工序93.2预计工期83.3、具体工期安排(单个进洞加固计划表见附表)9四、劳动组织、配套计划94.1施工平面布置94.2劳动力配备计划94.3 设备与材料供应计划10五、 盾构进洞115.1冻结效果的监测及完成的参数指标115.2盾

2、构进洞流程12六、 破壁及盾构穿越冻结区的保证措施137、冻胀与融沉控制措施137.1、冻胀对周围环境的影响及控制137.2、融沉控制和环境保护措施147.3、其他控制技术措施147.4、冻结保温措施:157.5环境设施保护措施15八、监测168.1监测内容168.2 温度传感器布置监测说明168.3 地面管线沉降监测16九、确保工程质量的主要技术要求与措施169.1、盾构穿越冻结区保证措施169.2、冻结工程质量的主要措施179.3、冻结孔施工方面的具体要求及措施179.4、确保冷冻站正常运转的安全技术措施17十、安全质量技术措施及质量管理体系1810.1质量保证体系1810.2抓好前期施工

3、准备工作搞好工艺协调2110.3认真做好工程技术质量管理的基础工作2110.4施工安全保障措施2110.5周边环境及公共设施保护措施23十一、应急预备方案23一、编制总说明1.1、施组方案的选择依据和设计规范、技术标准(1) 矿山井巷工程施工及验收规范(GBJ213-90)。(2) 煤矿井巷工程质量检验评定标准(MT5009-94)。(3) 钢结构设计规范GB50017-2003。(4) 地基基础设计规范GB50007-2002。(5) 建筑结构荷载规范GB50009-2001。(6) 建筑抗震设计规范GB50011-2001。(7) 地下铁道设计规范GB50157-2003。(8) 上海轨道

4、交通10号线5标工程地质勘察报告。(9) 旁通道冻结法技术规程,DG/TJ08-902-2006 J10851-2006。(10) 甲方提供的工程地质资料,工广平面布置,工作井结构等相关资料;隧道上、下行线衬砌圆环布置图(11) 井巷工程设计规范及其他相关国家、上海市安全文明施工规范。1.2、冻结方案编制依据为保障盾构顺利进洞,并根据地面工况条件(盾构进洞位置所在地面为原已建轨道交通风井,地面不具备施工条件),采用工作面水平冻结方案; 冻结施工方案着重从以下几个方面进行了考虑:1. 保障冻土墙的厚度、强度及封水性能可满足盾构进洞时土体的稳定要求。2. 外圈冻结孔深度应包裹住整个盾构机,确保盾构

5、进洞的安全。3. 在保障强度的前提下,尽量减少冻土墙体积,以减小冻结对周围环境的影响,对可能受影响的构筑物采取有效的保护措施。4. 冻结帷幕技术性能必须满足盾构进洞施工的安全和质量要求。5. 冻结方案应符合现场实际条件的施工可行性和良好的可操作性。6. 施工方案应在满足工程要求工期的条件下具备优化能力。7. 施工方案及措施必须满足城市环保及节能要求。8. 减少冻胀与融沉的危害。1.3、工程概况上海轨道交通11号线江边风井济阳路站区间工程采用盾构法施工隧道,盾构机本体长8.5米,地面标高+4.5米,隧道中心埋深-12.577米。本工程济阳路路站西端头井盾构出洞口处的地基已采用高压旋喷桩进行加固。

6、原加固情况见图一。图一由于一些不可预见性问题,盾构进洞开样孔9个,开始其中有一个出现出水出砂现象,后期其他探孔也出现漏水漏沙现象,鉴于工期等现场的其它工况条件,为确保盾构进洞的安全,对其采取冻结法进行封水堵漏加固土体的措施,再进行破洞门割除钢筋,进行盾构推进进洞。该段地层地质条件复杂,盾构进洞段穿越的土层主要为:层灰色淤泥质粘土、流塑,较均匀,含云母、有机质及贝壳碎屑,夹少量粉性土,局部为淤泥质粉质粘土,高压缩性。1j灰色粘质粉土,湿,中密,欠均匀,含云母、有机质,偶见贝壳碎屑,夹少量粘性土,中压缩性。其中1j层为微承压水层,盾构进洞时有涌砂涌水的风险。为保证盾构机进洞安全,防止泥砂及地下水涌

7、入工作井,及保护地面建构筑物的安全;盾构进洞地基冻结加固拟采用冻结盾构机全长水平冻结加固方法施工。鉴于洞门已进行过高压旋喷加固,只对盾构机外圈进行冻结,冻结完成后盾构机推进到地连墙槽壁,对盾构机外围及盾构机盾尾管片进行注浆,利用冻结壁封闭外部水力来源,然后破槽壁盾构进洞。二、冻结方案与冻结参数2.1.冻结方案的确定根据盾构施工所处地层及地面环境、地面没有施工场地,地面不具备冻结施工条件。盾构进洞地基加固拟采用端头井内水平冻结加固方法施工。详见施工示意图二。 图二2.1.1冻土墙厚度h的确定 设冻土墙平均温度为-10,冻土抗压强度压=3.6MPa,抗拉强度拉=1.8MPa,抗剪强度剪=1.6MP

8、a。洞口采取板状冻结方式加固。冻结加固体在盾构进洞破壁时,起到抵御水土压力、防止土层塌落和泥水涌入工作井的作用。该进洞口冻结加固体,其承受的荷载、计算模型及冻结管布置的示意图如图 1 所示:计算水土压力: 洞口的中心埋深为17.077m,当开洞直径为6.7m 时,开洞口的底缘深度为20.427m。 则按重液公式计算得到水土压力为: P=0.013H=0.266MPa 假定加固体为整体板块而承受水土压力,运用日本计算理论计算加固体的厚度:,计算得冻土墙厚度为2m。表1运用日本计算理论的数据及结果冻土平均温度冻土弯拉强度 水土压力 P加固体开挖内直径D系 数 安全系数 k计算加固体厚度 h-101

9、.8Mpa0.266 MPa6.7m1.22.02运用我国建筑结构静力计算理论公式进行验算:圆板中心所受最大弯曲应力计算公式为表2 运用我国建筑结构静力计算理论计算数据及结果水土压力 P加固体开挖内直径 D冻土泊松比计算加固体h计算得加固体最大弯拉应力max冻土弯拉强度-10安全系数 k0.266MPa6.7m0.352m0.94MPa1.8MPa1.91 max-10剪切验算加固体厚度沿槽壁开洞口周边验算加固体剪切应力表3 剪切应力验算数据及结果水土压力P加固体开挖内直径D加固体厚度h最大剪切应力冻土抗剪强度-10安全系数Kmax=0.221MPa-10=1.6Mpa0.266Mpa6.7m

10、2max-107.3根据以上计算结果并结合我公司类似工程冻结施工经验及现场实际情况(该洞门已进行过高压旋喷加固,不再考虑加固强度要求,仅考虑进洞止水),冻土墙厚度h 盾构进洞冻结壁厚度取2.0m(利用注浆将盾构机与外圈冻结壁连接成一体,进行封水,然后进行破除洞门槽壁,盾构进洞),外圈维护冻结帷幕厚度取1.6 m。2.2冻结范围及冻结孔的布置鉴于盾构进洞对加固体强度及密封性要求很高,以及实际现场施工情况和条件(施工场地的原因),采用水平冻结方案。主要技术参数:冻结体为洞口处冻结板块厚2.0m,直径10m(利用注浆将盾构机与外圈冻结壁连接成一体,进行封水,然后进行破处洞门盾构进洞)。只设置外圈冻结

11、孔,冻结孔数:水平冻结孔:32个,冻结孔深度为10.0米;测温孔4个,孔深:外圈进入土层9M。冻结管管材选择:冻结孔选用898mm20#低碳无缝钢管;测温孔选用898mm20#低碳无缝钢管。2.2.1主要冻结施工参数的确定(1) 积极期盐水温度-25-30。(2) 冻结孔偏斜率1%。(3)盾构进洞加固冻结孔最大终孔间距Lmax=lmax+2H=1.0m。(4)盾构进洞加固冻土平均发展速度v=28mm/d。(5)盾构进洞加固冻土墙交圈时间T=Lmax/2v=20天。(6)盾构进洞加固冻土墙达到设计强度的时间为30天。(考虑到水泥加固土体的水泥水化热,可能冻结时间要比原始土层要长一些)。(7)冷凝

12、温度 +35。根据以上参数选定,当冻结孔最大间距处交圈时,冻土墙与槽壁完全胶结。2.2.2、冻结孔设计(1)冻结孔布置盾构进洞每个洞圈共布置水平冻结孔32个;见如下:施工示意图三施工示意图三(2)冻结孔施工冻结管、测温管和供液管规格冻结管选用898mm20#低碳钢无缝钢管,采用丝扣连接加焊接;测温管采用898mm无缝钢管。打钻设备选型水平冻结孔施工,选用MD-60A型钻机进行施工,冻结管连接采用丝扣加焊接或内管箍焊接方式。钻孔使用灯光测斜,冻结孔终孔偏斜控制在1%以内。选用BW-250/50型泥浆泵台,电机功率14.5KW。水平冻结孔施工方法:水平冻结孔施工较复杂,工序为:定位开孔及孔口管安装

13、孔口装置安装钻孔测量封闭孔底部打压试验。具体如下:(1)定位开孔及孔口管安装:根据设计在隧道内定好各孔位置。根据孔位在槽壁上定位开孔,首先注意槽壁内主筋干涉时,调整孔位,用开孔器(配金刚石钻头取芯)按设计角度开孔,开孔直径130,当开到深度300时停止钻进,安装孔口管;孔口管的安装方法为:首先将孔口处凿平,安好四个膨胀螺丝,而后在孔口管的鱼鳞扣上缠好麻丝或棉丝等密封物,将孔口管砸进去,用膨胀螺丝上紧,上紧后,再去掉螺母,装上DN125闸阀,再将闸阀打开,用开孔器从闸阀内开孔,开孔直径为110,一直将槽壁开穿,这时,如地层内的水砂流量大,就及时关好闸门。(2)孔口装置安装:用螺丝将孔口装置装在闸

14、阀上,注意加好密封垫片。详见如下示意图。由于外圈钻孔长度太长,无法采用打倾斜孔的方法来满足设计冻结厚度,故外圈冻结孔施工时需破坏端头井部分结构。施工中当第一个孔开通后,没有涌水涌砂,可继续开孔施工,但继续开孔仍要装孔口装置,防止突发涌水涌砂现象出现;若涌水涌砂较厉害,还应当进行注水泥浆(或双液浆)止水及地层补浆。(3)钻孔:按设计要求调整好钻机位置,并固定好,将钻头装入孔口装置内,在孔口装置上接上1.5寸阀门,并将盘根轻压在盘根盒内,首先采用干式钻进,当钻进费劲不进尺时,从钻机上进行注水钻进,同时打开小阀门,观察出水、出砂情况,利用阀门的开关控制出浆量,保证地面安全,不出现沉降。钻机选用MD-

15、60A型锚杆钻机,钻机扭矩3000NM,推力25KN。 (4)封闭孔底部:用丝堵封闭好孔底部,具体方法是,利用接长杆将丝堵上到孔的底部,利用反扣在卸扣的同时,将丝堵上紧。(5)打压试验:封闭好孔口用手压泵打水到孔内,至压力达到0.8MPa时,停止打压,关好闸门,经试压30min压力下降不超过0.05MPa,再延续15min压力保持不变为合格。(6)管漏:设计在管漏发生时的处理方法是:逐根提出孔内管子,并用泥浆泵逐个焊缝打压,找出泄漏焊缝及原因,及时处理,并作好记录,二次下入后仍须自检。在实际施工中,发生冻结孔打压保压不合格的冻结孔,要采用在泄漏孔冻结管内下入小一级冻结管(套管)的方法处理此类事

16、故。2.3、冷冻站设计:(1)、制冷系统单个盾构进洞需冷量Q=1.3qNHd=3.2万大卡/小时D=0.089,H=352,q=250盾构进洞根据冷量计算选用W-YSLGF300型螺杆机组2台套,单台设计工况制冷量为8.75万大卡/小时。 冷冻站首次充氟立昂500Kg。(2)、冷却水系统冷却水总需水量:W=120m3/h,选IS-150-125型水泵,流量200m3/h,电机功率22.5kw。设计冷却水进水温度+25,出水温度+2832。选用2台NBL50型冷却水塔,补充新鲜自来水10m3/h左右,水温+21。(3)、盐水系统.设计盐水比重1250kg/m(28.9Be),比热为0.665,盐

17、水凝固点-34.6,即盐水流量113m3/h。设计单孔盐水流量不小于5m3/h。盐水泵选用IS-150-125型水泵,流量200m3/h,电机功率45kw。冻结孔为每3孔一组串联安装。计算盐水干管,则选用1595低碳钢无缝钢管供回液。(4)、.冻结站需N-46号冷冻机油800Kg。(5)、用电负荷为250KVA。三、施工工序及工期安排3.1施工工序通过测温孔观测计算,确定冻结帷幕交圈、冻土与槽壁完全胶结,并达到设计强度后,盾构推进至槽壁处,停止推进,开始破除洞口槽壁直至槽壁最后一层钢筋砼,槽壁完全破除,然后实施盾构进洞推进。具体施工工艺见下页图。冻结站安装与钻孔施工同时进行,钻孔施工结束即可转

18、入冻结器安装冻结阶段。后再对土体进行加固冻结运转。 28中煤第五建设公司上海分公司冻结法施工工艺流程图施工前的准备工作(进场、加工件组织)冻结系统调试钻孔定位及开孔冻 结 系 统 部 分 安 装钻冻结管及测斜冻结管打压下冻结器冻结器连接积极冻结工 程 监 测开 机 冻 结注浆封闭盾构机外围水源,打探孔开槽破壁、安装止水环盾构机进洞解冻封孔、注浆竣工验收3.2预计工期 冻土平均发展速度取28mm/d,冻结孔最大间距1000mm,冻土墙交圈时间:T=1000282=18天(取20天),达到厚度及强度需要30天,因此冻结天数达到后可完全破壁,盾构进洞。3.3、具体工期安排(单个进洞加固计划表见附表)

19、a、钻孔下管及冻结站安装 25天b、积极冻结 水平冻结30天c、破槽壁盾构推进进洞 7天d、融沉注浆 90天总工期 62天(不包括融沉注浆)具体工期详见附表二: 盾构进洞总工期计划表为保证盾构进洞时的安全和冻结加固不因时间暴漏过长而融化,应做好冻结施工与盾构施工工序的相互配合;冻结达到设计要求,盾构机推进到槽壁,注浆封闭盾构机周围空隙后进行探孔检测,探孔检测无水方可进行槽壁的破除,在破完第一层槽壁后(约为槽壁厚度的60%70%),再进行最后一层钢筋的割除,盾构机推进完成进洞。根据实际工程进度安排,在盾构进洞前60天内进场开始施工。四、劳动组织、配套计划4.1施工平面布置冻结站现场具体布置根据现

20、场情况定。工人宿舍、库房、材料堆放场地和施工辅助设施布置,进工地后根据现场情况确定。考虑施工现场的地方狭小,冻结站可安装在具加固区100米内的施工地区,或安装在车站二层平台采用盐水干管长距离供冷。4.2劳动力配备计划 劳动力配备计划见下表 “劳动力配备计划表”。打钻工先进场施工,然后进入冻结站安装。同时施工最多人数为48人。 劳动力配备计划表工 种人 数工 种人 数打钻工20电焊工4冻安工16技术人员2机修工2管理人员2电 工2合计484.3 设备与材料供应计划地层冻结施工的设备与材料用量分别见下表“盾构进洞冻结施工主要设备及材料用量表”。 盾构进洞冻结施工主要设备及材料用量表编 号项 目单位

21、数量备 注一主要设备1冷冻机W-YSLGF300型台22IS150-125-315水泵台2盐水泵3IS125-100-215C台2清水泵4真空泵(或抽氟机)台15经纬仪台16测温仪台17NBL-50冷却塔台28MD-50钻机台19电焊机台2二主要材料11595无缝钢管T1021274.5无缝钢管T53898无缝钢管T9冻结管41.5”钢管T255高压胶管m600耐压0.8Mpa6冷冻机油KG800N467氟里昂R22KG8008氯化钙T2091”阀门只100108”阀门只5011保温材料M2200进洞主要冻结施工参数一览表序号参 数 名 称单位数 量备 注1冻结孔深度m10.0入土深度10米2

22、冻土墙设计厚度m23冻土墙平均温度-104积极冻结时间天305垂直冻结孔数个06水平冻结孔数个327冻结孔开孔间距m0.7468冻结孔平均偏斜率%19设计最低盐水温度-25-30冻结7天盐水温度达到-20以下10单孔盐水流量m3/h511冻结管规格(外圈)水平mm89820#低碳钢无缝钢管12测温孔个4898mm无缝钢管13冻结制冷量Kcal/h3.2万工况条件(进洞)14最大用电量kw25015用水量m3/h10新水补充16五、 盾构进洞5.1冻结效果的监测及完成的参数指标(1)盐水去回路温差不大于-1.5。(2)各孔组温差不大于-2,盐水流量5立方米。(3)盐水温度降至-25 -28 以下

23、。(4)积极冻结时间要达到设计值(30天以上)。(5)冻结过程中无断管和盐水漏失。(6)选择合理测温孔测点温度,计算冻结壁厚度及平均温度达到设计值。(7)打探孔无水,且探孔内温度在-5以下已结冰。(8)经过四方验收合格后方可破槽壁盾构机进洞。5.2盾构进洞流程当冻结帷幕满足设计要求时开始破除槽壁60 cm,破除完后,在进行探孔检测,达到设计后,再对最后一层槽壁20cm钢筋砼进行破除,对内圈的(3圈)冻结孔内盐水吹出,进行洞口内冻结管拔除(第1、2、3圈),然后盾构靠上冻结壁;冻结段推进过程中严格控制推进速度和压力。 盾构靠近槽壁注浆封闭空隙槽壁破除50-80cm 探 孔 盾构进洞盾构推进破除槽

24、壁最后一层钢筋 盾构进洞流程图六、 破壁及盾构穿越冻结区的保证措施6.1温度控制为了保证盾构能够推进,因此盾构外周的冻土温度必须得到有效的控制,冻土温度通过测温孔得到。我们控制盾构外周的冻土温度不高于5。最终通过测温手段确定冻结已达既定要求后才进行盾构进洞施工6.2 打设槽壁探孔通过测温孔观测计算,确认冻结帷幕达到设计厚度及强度,在洞门槽壁上均布的打若干探孔,以判断冻土与槽壁的胶结情况。探孔在两测温孔之间布置,按照各探孔的布置在洞门上定点,然后用开孔钻机打探孔,探孔进入冻土内深度控制在1015cm,探孔打好后,采用高精度的温度计或测温仪进行量测,各探孔实测温度必须低于4。6.3槽壁凿除当通过探

25、孔实测温度判断冻结帷幕与槽壁完全胶结后,盾构机靠上槽壁,探孔无水方可将槽壁全部破除, 最后一层破壁时间不宜超过1天,以防冻结帷幕融化,影响其强度。应采取措施作好保温工作,以确保冻土的低温强度。盾构进洞时,最后一层破壁可采用分层分块进行,如破壁时间来不及的情况下直接用盾构破壁,防止冻结帷幕融化,造成不良后果。7、冻胀与融沉控制措施7.1、冻胀对周围环境的影响及控制土层冻胀主要是地层中孔隙水结冰膨胀引起的,多数土层结冰时均要产生冻胀,冻胀量的大小与土层力学特性,约束条件,冻结速度,土层含水量及水分迁移的多少有关,水变冰的体积膨胀量约9%,而土体膨胀量一般约为3%-4%,依据施工经验,在浅土层进行冻

26、结时易产生较大的冻胀量,一般取冻土体积的15%。影响范围可能波及到非冻土区11.5m,因此,冻结施工前,只要对所有影响范围内的管线采取适当的保护措施;施工过程中,加强检测,冻胀影响完全可以控制。(如采用定向钻孔,局部冻结,热水循环等)冻土产生的冻胀压力与冻土的平均冻胀率及周围土性的弹性模量、泊松比有关。经实测。由于冻结区域是开放式的,槽壁为C30钢筋砼,因此冻胀力不会对槽壁产生较大影响。7.2、融沉控制和环境保护措施融沉主要是冻土融化时排水固结引起的,滞后于冻土的融化,冻土融化时的沉降量与融层厚度、融层土的特性有关。根据施工经验和土工试验,冻土融化后,其标高可能略低于原始地层的标高,为减少融沉

27、量,解冻后,可在隧道内进行适当的跟踪注浆,减小冻结对周围环境的影响。在冻结管拔出的同时在孔内灌注水泥粘土浆或粉煤灰浆,为防止低温对注浆强度的影响,在水泥粘土浆或粉煤灰浆内掺防冻早强剂氯化钙(23%)。 7.2.1 融沉补偿注浆(1)注浆管布置采用隧道内管片注浆孔进行融沉注浆。(2)注浆材料:注浆材料采用水泥单液浆或水泥水玻璃双液浆。水泥水玻璃双液浆比为:水泥浆与水玻璃溶液体积比为1:1。水泥浆水灰比为1:0.8。 注浆压力为0.40.5MPA。(3)注浆顺序注浆的顺序是先下部后上部。(4)注浆原则及方法注浆遵循多次少量均匀的原则。单孔一次注浆量为0.5 m3,最大不超过1m3。注浆压力按设计要

28、求为静水压力的2倍,压力小于0.5MPa。一天地层沉降大于0.5mm,或累计地层沉降大于3mm时应进行融沉补偿注浆;地层隆起达到3mm时应暂停注浆。具体要根据地面变形监测情况做适当调整。以少量多次为原则,按融化冻土体积15%控制注浆量;注浆范围为整个冻结区域。7.2.2 注浆施工过程的监测控制地面沉降变形是注浆的目的。因此,解冻过程中,要加强地面变形监测、冻土温度监测、冻结壁后水土压力监测。以上综合监测数据是注浆参数调整的依据。7.2.3 融沉注浆结束条件地层隆起达到3mm时应暂停注浆。具体要根据地面变形监测情况做适当调整。融沉注浆的结束是以地面沉降变形稳定为依据。若冻结壁已全部融化,且不注浆

29、的情况下实测地层沉降持续一个月每半个月不大于0.5mm,累计沉降量小于1mm;即可停止融沉注浆。7.3、其他控制技术措施7.3.1 为了预防冻胀和融沉,设计选用标准制冷量较大的冷冻机组,在短时间内把盐水温度降到设计值,以加快冻土发展,提高冻土强度,减少冻胀和融沉量。7.3.2 掌握和调整盐水温度和盐水流量,必要时可采取间歇式冻结,控制冻土发展量,以减少冻胀和融沉。7.3.3 预计融沉量较大的部位可采取压浆充填,以把融沉造成的危害降低到最低限度。7.4、冻结保温措施:由于气温较高,为减少冷量损失,冻结器及盐水干管采用绝热材料进行保温,必要时槽壁使用泡沫板覆盖保温,同时做好防雨措施。7.5环境设施

30、保护措施盾构进洞加固施工为防止施工时对周边建筑、地下管线、民用及公共设施带来不良影响,必须制定严格的保护措施。(1)必须选用无污染、效率高、安装运输方便的螺杆冷冻机组作为制冷系统的主机。防止挥发性气体污染环境。(2)采取必要的措施,防止打冻结孔时水土流失;在钻孔施工期间加强沉降的监测,发现跑泥漏沙水土流失严重引起的沉降,影响到建筑物和地下管线,应立即停止施工,立即注浆,防止沉降影响周围建筑物和地下管线,到没有沉降为止,待地层较稳定后再施工钻孔(3)施工之前必须认真查清周遍建筑、地下管线、民用及公共设施的具体情况,针对性制定具体保护措施。(4)加强冻胀与融沉监测,发现冻胀影响到建筑物和地下管线,

31、通过打设的卸压孔减小冻胀或从冻结孔加热循环,进行解冻;布置注浆孔,进行跟踪注浆,防止融沉影响周围建筑物和地下管线。(5)施工过程中进洞口所处的地面沉降和隆起量应控制在规范要求以内。在隧道轴线上,沿中心线每5m布置一沉降测点。每一测量断面以轴线为中心,向两侧2m、4m、6m各布置一沉降测点,共计7点。(6) 进洞口加固施工全过程中沿隧道方向设立沉降观察标志。测试频率为1次/天;施工结束后15天内对隧道范围范围12次/周。(7) 随时向甲方及监理工程师汇报地面沉降变形测量情况。八、监测8.1监测内容1.冻土的发展速度及冻结壁的平均温度, 冻结孔去回路温度;冷却循环水进出水温度;盐水泵工作压力;冷冻

32、机吸排气温度;制冷系统冷凝压力;冷冻机吸排气压力;制冷系统汽化压力。2.槽壁与冻土接合面的温度;3.冻结地面的冻胀及融沉(位移);8.2 温度传感器布置监测说明1.盐水流量与盐水温度监测在去、回路盐水干管上安装热电偶传感器测量去、回路盐水温度。在去路盐水干管上安装流量计测量总盐水流量,测量冻结器回路的盐水流量。在每组冻结器上设测温口,安装热电偶温度传感器测量盐水回路温度。冻结系统总流量在开冻时测量,其它温度与流量测量每班1次;确保每组冻结孔盐水流量5m3/小时,盐水去回路温差在冻结壁交圈以后应小于1.2。2.温度传感器布置(1).冻结加固体内温度传感器布置 冻结加固体内共布置9个测温孔,每一孔

33、内布置13个测点,从冻结深度向上每间隔12米布置一个测点。 (2).槽壁内侧温度传感器布置为检测混凝土槽壁的冷量损失及间接推测混凝土槽壁外表面的温度,在槽壁的内表面布置1组温度传感器,共5个测点,从冻结深度向上每间隔1.5米布置一个测点。8.3 地面管线沉降监测为保护地面环境和管线,冻结加固工程施工过程和结束后的融沉过程,委托监测单位进行跟踪监测。九、确保工程质量的主要技术要求与措施9.1、盾构穿越冻结区保证措施(1) 冻土墙解冻要适量,控制平均温度在-5-8之间,强度为2.22.5Mpa之间。(2) 盾构在穿越冻结区时,不宜停留,在拼装管片或处理故障时,每隔1015分钟将刀盘转动5分钟,以防

34、刀盘被冻死。9.2、冻结工程质量的主要措施 (1)建立健全质量保证体系、质量管理机构、组织机构和监督机构,为保证质量提供组织保证。 (2)认真分析该工程地质资料,精心编制施工技术设计和施工组织设计。 (3)控制造孔和冻结器施工质量,确保冻结质量符合要求。 (4)严控冷冻站安装质量,提高制冷效率,确保盐水降温符合要求。9.3、冻结孔施工方面的具体要求及措施 (1)认真按图纸要求施工钻机平台,确保钻机平台平整、稳固。 (2)造孔上部采用取芯钻进,下部使用液压顶进。 (3)测温孔布置在相邻冻结孔终孔间距较大的界面上。具体位置由现场技术负责人和项目经理共同商定。测温管的下放及焊接严格按冻结孔的质量要求

35、施工,并及时绘制偏斜平面图。 (4)钻进时,应按深度及地层情况的需要,及时增减钻铤,要求作到均匀、匀速钻进,严禁忽快忽慢,压力忽大忽小。 (5)冻结管应进行地面配组,丈量全长,做好记录。 (6)偏斜。冻结孔平均偏斜率不得大于1%,冻结孔终孔间距不大于设计值,否则应予以补孔,冻结深度应满足设计要求,冻结管长度应不小于设计冻结深度。 (7)测斜。冻结孔施工过程中使用灯光经纬仪进行终孔和成孔测斜并及时绘制冻结孔偏斜平面图。9.4、确保冷冻站正常运转的安全技术措施9.4.1安全措施(1)进点前对全体施工人员进行安全思想教育,提高遵章守纪、安全生产、文明施工、安全用电、用火、防毒的安全意识。 (2)认真

36、贯彻执行保安规程、井巷工程施工验收规范、安全操作规程等各项安全生产规程、规范,健全落实岗位责任制,忠于职守,各尽其责。 (3)健全组织、发挥专职安全工作人员的作用,建立以项目经理为第一责任者的安全生产责任制,支持兼职安全人员的工作,发挥他们的监督指导作用,坚持每月一次安全大检查制度。 (4)合理使用并定期检修机械设备,提高设备有效生产时间和效率,保证设备状况良好,杜绝氟、水、油的跑、冒、滴、漏现象。 (5)强化生产指挥系统,做到分工明确、调度指挥有力、工序衔接合理,保证生产环境整洁有序,道路畅通,做到安全生产和文明施工。 (6)做好防汛、防火工作,冷冻站10米以内严禁吸烟及明火,并备好消防器材

37、,在必要的位置安装警戒牌。 (7)认真执行各项安全生产规定,严禁违章指挥和违章操作。9.4.2 技术措施 (1)按矿山井巷工程施工及验收规范要求及企业内部质量标准安装冷冻站,设备安装前应认真检修、除锈,制冷附属设备严格按标准要求进行打压试漏,使用的各种阀门在安装前要进行彻底检修,确保阀门开启灵活,关闭严密。 (2)冷冻站安装完毕后要认真进行系统打压、试漏及抽真空密封性能试验,试验合格后,要进行系统排污。 (3)冻结器中安装11/2” 焊接管,安装前要进行畅通及外观检查,确保冻结器正常工作。 (4)盐水系统要设过滤网,防止杂物进入冻结器,造成冻结器堵塞。 (5)加强制冷运转期间制冷系统、盐水系统

38、、清水系统的各种技术参数的监测,确保较高制冷率。为了便于技术分析,坚持质量日报制度,发现异常情况及时汇报,及时处理。 (6)加强与业主、总承包商、监理方的联系,经常通报冻结施工情况,认真快速处理业主、总承包方、监理单位对冻结施工提出的建议及要求,根据冻结施工情况,必要时向他们提出建议。 (7)加强各种记录、报表的收集、整理工作,以便查阅。十、安全质量技术措施及质量管理体系10.1质量保证体系10.1.1 思想上、组织上的高度重视是确保工程质量及工期按时完的重要保证,根据工程的重要性,成立以公司法人代表为总负责的质量管理机构,建立以项目部项目经理为组长的质量监督检查小组,每周至少两次对现场各分部

39、分项工程的质量进行全面检查,项目部任命各分项工程质量负责人,每天对工地各施工班组进行质量检查。在施工过程中,必须严格按照有关设计图纸和设计文件施工,严格执行国家和行业规范、规程、质量标准及有关规定,按照本公司质量保证体系要求进行施工质量控制。并采用最新的冻结施工设备 、技术,组织安全、文明施工。以达到施工安全、优质、快速、高效,争创全优工程。为了实现这一目标,根据本公司质量保证体系要求,建立行之有效的施工现场质量保证体系。10.1.2思想保证体系采取劳动竞赛、技术评比、技术讲座、脱产轮训、上岗教育等多种方式对职工进行质量、安全的思想教育和技术教育,树立安全第一、质量第一、用户第一的思想,坚持贯

40、彻本公司的质量方针与质量目标,坚持照章施工操作。对于特殊工种,进行专业培训考核,持证上岗。实际严明的奖惩制度,提高职工责任,杜绝事故隐患。据各分部工程需要,及时投入施工劳动力量,充分发挥和调动施工队伍的工作积极性,提高工效。10.1.3组织保证体系实行项目经理负责制,责任到人,从项目经理、班组长到生产工人层层落实。并设立安全与质量管理小组,制定与监督实施有关安全与质量管理制度,收集合理化建议。建立统一的、权威的、完善的管理机构,协调和控制各分部工程的交叉平行施工,避免出现相互影响和窝工现象,确保总工期按计划进行。10.1.4过程保证体系质 量 管 理 机 构 图分公司总经理:质量总负责工程技术

41、部经理:工程质量总监督人项目经理:项目工程质量责任人项目总工程师(贯标管理责任人)专职质检工程师(质量控制责任人)冻结作业质量员设备检修质量员质量管理小组冻结孔施工质量员供电作业质量员材料供应质量员综合作业质量员严格按照程序文件、作业指导书、工艺规程和工程管理制度组织施工。抓好施工组织设计会审,施工措施编制、审批、贯彻、材料与设备管理,工序控制,质量检验把关,工程计量等各个环节,及时收集整理施工资料和听取有关方面意见,发现问题,立即处理。各分项工程严格按照项目法要求施工,认真优化施工方案。确保在各种条件因素下的施工均能保质保量按时完成任务。10.1.5检验保证体系由项目经理组织职工对工程的安全

42、、质量进行自检和互检。由公司安全与质检部门派人进行专门的安全、质量监督检查。为认真贯彻施工技术设计和业主及总承包商质量管理的方针,在项目部的直接领导下,建立由队长、技术人员、专职安全员、钻机机长、冷冻站站长及班长等人组成的安全管理网络,质量安全齐抓共管。开展以安全、质量为主题的劳动竞赛活动,增强职工的质量、安全意识,确保工程质量、安全目标的顺利实现。(保证体系管理机构见上图、保证体系见下图)10.2抓好前期施工准备工作搞好工艺协调10.2.1前期冻结孔施工以及其他分部工程施工,要充分考虑与总包方的交叉平行作业,为总工期的完成创造良好的条件。10.2.2为确保各工期节点的按期完成,各分部工程中投

43、入足够并留有一定富裕系数的施工设备。10.3认真做好工程技术质量管理的基础工作11.3.1在技术设计与施工上精心设计,确保新技术、新工艺的安全要求。施工中严格及时检查各项指标是否符合设计标准。11.3.2在材料质量管理上严格把好材料采购关,各种原材料、产品必须有合格证,并经过抽查检验合格方可使用。11.3.3施工过程中合理安排各工序的协调,避免间断施工,而影响工程质量。11.3.4施工各分部工程应按质量技术标准进行验收评定和签证。10.4施工安全保障措施10.4.1各分项工程施工建立健全各种安全责任规章制度。10.4.2各种机械设备设专人操作,持证上岗。10.4.3认真落实现场安全帽、安全网、安全带制度。10.4.4夜间施工设立灯光示警装置。10.4.5现场供电系统设立安全保护接零和安全罩等。10.4.6吊装作业制定专门安全措施和操作规则,配备专职信号工、吊装工进行操作。10.4.7现场成立联合消防保卫小组,建立值班制度,设置防火宣传标志,施工现场备有足够的消防器材。 质 量 保 证 体 系 图思想保证(项目经理)经理部每月一次质量分析会班组每周一次质检活动制度保证(项目经理)质量管理条例、质量检验制度、操

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号