高等数学上闭区间上连续函数的性质ppt课件.ppt

上传人:牧羊曲112 文档编号:2075196 上传时间:2023-01-07 格式:PPT 页数:20 大小:683.50KB
返回 下载 相关 举报
高等数学上闭区间上连续函数的性质ppt课件.ppt_第1页
第1页 / 共20页
高等数学上闭区间上连续函数的性质ppt课件.ppt_第2页
第2页 / 共20页
高等数学上闭区间上连续函数的性质ppt课件.ppt_第3页
第3页 / 共20页
高等数学上闭区间上连续函数的性质ppt课件.ppt_第4页
第4页 / 共20页
高等数学上闭区间上连续函数的性质ppt课件.ppt_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《高等数学上闭区间上连续函数的性质ppt课件.ppt》由会员分享,可在线阅读,更多相关《高等数学上闭区间上连续函数的性质ppt课件.ppt(20页珍藏版)》请在三一办公上搜索。

1、,第八节 闭区间上连续函数的性质,闭区间上的连续函数有很多重要性质.这些性质在以,后各章的学习中经常用到.这些性质,从几何上是容易,理解的,但要给出完整而严格的证明,有时却是比较困,难的.本节我们将讨论闭区间上连续函数的某些性质,并从几何上对这些性质予以解释.,一、最大值最小值定理,定义 设 定义在区间 上,,则称 为函数 在区间上的最大值;为最大值点,,若存在点 使得对每一个 都有,则称 为函数 在区间上的最小值;为最小值点,,若存在点 使得对每一个 都有,并记,并记,例 函数 在整个区间上的最小值为,但无最大值.,闭区间上的连续函数在该区间上有界,并一定有最大值,定理1(最大值最小值定理)

2、.,和最小值.,从右边的图中可以看出,若函数 在闭区间上连,续,则 在点 和 处,分别取到最大值和最小值.,证明从略.,用简单的数学符号,定理1可表述为:,值得注意的是,定理1中的条件 在闭区间上连续,,不能改为开区间.,证 因 存在,由局部有界性定理,存在,例 设函数 在 内连续,且 存在,,由于区间 可以表示为,由于函数连续,故函数在闭区间 有界.,证明 在 内有界.,使得 在 内有界;,由此得函数在 内有界.,二、零点定理与介值定理,在初等代数中,我们熟知这一个事实:,从几何上我们可以很清楚地看到,则一定存在,对多项式函数,若存在 使得,该问题的实际意义.,但该问题对于一般函数而言,结论

3、不成立.,注意到:,例如,,但不存在,关键原因在于函数不连续.,定理2(零点定理),定理2可用符号表述为:,若函数 在闭区间 上连续,且 异号,,则函数 在开区间 内至少存在一个零点.,从几何上看,定理2表示:若连续曲线弧 的,两个端点分别位于 轴的两侧,则曲线弧与 轴至少有,一个交点.,例 证明方程 在区间 内有唯一的根.,证 令,由零点定理,必存在,使得,又函数 是单调增加函数,故零点是唯一的.,例 任何实系数奇次多项式方程必有实根。,证 设实系数奇次多项式方程为,因,不妨设.记,可见:,故,存在 使得,使得,同理存在 使得,因 由零点定理,知存在,证 作函数 则 且,且,则对于介于 与 之间的任何实,定理3(介值定理)若函数 在闭区间 上连续,数 在区间 内至少存在一点 使得,即,注 零点定理是介值定理的特殊情况.,之间的任何值.即,推论1 闭区间上的连续函数必取得介于最大值与最小值,为闭区间.,推论2 闭区间上的不为常数的连续函数把该区间映射,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号