组合零件加工工艺、程序编制及仿真毕业设计.doc

上传人:laozhun 文档编号:2946731 上传时间:2023-03-05 格式:DOC 页数:46 大小:168.50KB
返回 下载 相关 举报
组合零件加工工艺、程序编制及仿真毕业设计.doc_第1页
第1页 / 共46页
组合零件加工工艺、程序编制及仿真毕业设计.doc_第2页
第2页 / 共46页
组合零件加工工艺、程序编制及仿真毕业设计.doc_第3页
第3页 / 共46页
组合零件加工工艺、程序编制及仿真毕业设计.doc_第4页
第4页 / 共46页
组合零件加工工艺、程序编制及仿真毕业设计.doc_第5页
第5页 / 共46页
点击查看更多>>
资源描述

《组合零件加工工艺、程序编制及仿真毕业设计.doc》由会员分享,可在线阅读,更多相关《组合零件加工工艺、程序编制及仿真毕业设计.doc(46页珍藏版)》请在三一办公上搜索。

1、南通职业大学毕业设计(论文)课题: 组合零件加工工艺、程序编制及仿真 系 科: 机械工程系 专 业: 机械制造及自动化(数控)班 级: 机制054D 姓 名: 张磊 指导教师: 彭淑华 完成日期: 2008年5月 摘要 数控机床的组成部分包括测量系统、控制系统、伺服系统及开环或闭环系统,在对数控零件进行实际程序设计之前,了解各组成部分是重要的。数控中,测量系统这一术语指的是机床将一个零件从基准点移动到目标点的方法。目标点可以是钻一个孔、铣一个槽或其它加工操作的一个确定的位置。用于数控机床的两种测量系统是绝对测量系统和增量测量系统。绝对测量系统(亦称坐标测量系统)采用固定基准点(原点),所有位置

2、信息正是以这一点基准。换句话说,必须给出一个零件运动的所有位置相对于原始固定基准点的尺寸关系。X和Y两维绝对测量系统,每维都以原点为基准。增量测量系统有一个移动的坐标系统。运用增量系统时,零件每移动一次,机床就建立一个新的原点(基准点)。使用增量测量系统时的X和Y值。注意,使用这个系统时,每个新的位置在X和Y轴上的值都是建立在前一个位置之上的。这种系统的缺陷是,如果产生的任何错误没有被发现与校正,则错误会在整个过程中反复存在。用于数控设备的控制系统通常有两类,即点位控制系统和连续控制系统。点位控制数控系统机床(有时称为位置控制系统数控机床)只有沿直线运动的能力。当沿两轴线以等值(X2.000,

3、Y2.000)同时编程时,会形成45度斜线。点位控制系统常用于需确定孔位的钻床和需进行直线铣削加工的铣床上,以一系列小步运动形成弧形和斜线。然而,用这种方法时,实际加工轨迹与规定的切削轨迹略有不同。AbstractN/C machine tool elements consist of dimensioning system, servomechanisms and open- or closed-loop systems. It is important to understand each element prior to actual programming of a numerical

4、ly controlled part.The term measuring system in N/C refers to the method a machine tool uses to move a port from a reference point to a target point. A target point may be a certain location for drilling a hole, milling a slot, or other machining operation. The two measuring systems used on N/C mach

5、ines are the absolute and incremental. The absolute (also called coordinate) measuring system uses a fixed reference point (origin). It is on this point that all positional information is based. In other words, all the locations to which a part will de moved must be given dimensions relating to that

6、 original fixed reference point. It shows an absolute measuring system with X and Y dimensions, each based on the origin. The incremental measuring system (also call delta) has a floating coordinating system. With the incremental system, the machine establishes a new origin or reference point each t

7、ime the part is moved. It show X and Y values using an incremental measuring system. Notice that with this system, each new location bases its values in X and Y from the preceding location. One disadvantage to this system is that any errors made will be repeated throughout the entire program, if not

8、 detected and corrected. There are two types of control systems commonly used on N/C equipment: point-to-point and continuous path. A point-to-point controlled N/C machine tool, sometimes referred to as a positioning control type, has the capability of moving only a straight line. However, when two

9、axes are programmed simultaneously with equal values (X2.000 in., Y2.000 in.) a 45angle will be generated. Point-to-point systems are generally found on drilling and simple milling machine where hole location and straight milling jobs are performed. Point-to-point systems can be utilized to generate

10、 arcs and angles by programming the machine to move in a series of small steps. Using this technique, however, the actual path machined is slightly different from the cutting path specified.目 录第一章 概述第二章 零件的数控加工工艺分析1. 机床的合理选用2. 数控加工零件工艺性分析3. 加工方法的选择与加工方案的确定4. 工序与工步的划分5. 辅助工序的安排及工序间的衔接6. 零件的安装与夹具的选择7.

11、 刀具的选择与切削用量的确定8. 对刀点与换刀点的确定9. 加工路线的确定第三章 零件图第四章 零件加工工艺的分析1. 零件图样的工艺分析2. 确定装夹方案3. 确定加工工序及进给路线4. 选择刀具5. 选择切削用量第五章 程序分析第六章 程序第七章 数控车床与普通车床的区别第八章 数控车床的使用第九章 总结第十章 参考文献第一章 概述 在数控机床上完成零件的数控加工:(1) 分析被加工零件的图样,明确加工内容及技术要求。(2) 确定零件的加工方案,制定数控加工工艺路线。如划分工序、安排加工顺序、处理与非数控加工工序的衔接等。(3) 加工工序的设计。如选取零件的定位基准、装夹方案的确定、工步划

12、分、刀具选择和确定切削用量等。(4) 数控加工程序的调整。如选取对刀点和换刀点、确定坐标系和加工路线等。 由上述可知,数控加工过程是在一个由数控机床、刀具、夹具和工件以及加工程序构成的数控加工工艺系统中完成的。数控机床是零件加工的工作母机,刀具直接对零件进行切削,夹具用来固定被加工零件并使之占有正确的位置,加工程序控制刀具与工件之间的相对运动轨迹以及机床的辅助运动。工艺系统性能的好坏直接影响零件的加工精度和表面质量。第二章 零件的数控加工工艺分析 1. 机床的合理选用 在数控机床上加工零件时,一般有两种情况。第一种情况:有零件图样和毛坯,要选择适合加工该零件的数控机床。第二种情况:已经有了数控

13、机床,要选择适合在该机床上加工的零件。无论哪种情况,考虑的因素主要有,毛坯的材料和类、零件轮廓形状复杂程度、尺寸大小、加工精度、零件数量、热处理要求等。概括起来有三点:要保证加工零件的技术要求,加工出合格的产品。有利于提高生产率。尽可能降低生产成本(加工费用)。2. 数控加工零件工艺性分析 数控加工工艺性分析涉及面很广,在此仅从数控加工的可能性和方便性两方面加以分析。(一) 零件图样上尺寸数据的给出应符合编程方便的原则 1.零件图上尺寸标注方法应适应数控加工的特点在数控加工零件图上,应以同一基准引注尺寸或直接给出坐标尺寸。这种标注方法既便于编程,也便于尺寸之间的相互协调,在保持设计基准、工艺基

14、准、检测基准与编程原点设置的一致性方面带来很大方便。由于零件设计人员一般在尺寸标注中较多地考虑装配等使用特性方面,而不得不采用局部分散的标注方法,这样就会给工序安排与数控加工带来许多不便。由于数控加工精度和重复定位精度都很高,不会因产生较大的积累误差而破坏使用特性,因此可将局部的分散标注法改为同一基准引注尺寸或直接给出坐标尺寸的标注法。 2.构成零件轮廓的几何元素的条件应充分在手工编程时要计算基点或节点坐标。在自动编程时,要对构成零件轮廓的所有几何元素进行定义。因此在分析零件图时,要分析几何元素的给定条件是否充分。如圆弧与直线,圆弧与圆弧在图样上相切,但根据图上给出的尺寸,在计算相切条件时,变

15、成了相交或相离状态。由于构成零件几何元素条件的不充分,使编程时无法下手。遇到这种情况时,应与零件设计者协商解决。(二) 零件各加工部位的结构工艺性应符合数控加工的特点 1)零件的内腔和外形最好采用统一的几何类型和尺寸。这样可以减少刀具规格和换刀次数,使编程方便,生产效益提高。 2)内槽圆角的大小决定着刀具直径的大小,因而内槽圆角半径不应过小。零件工艺性的好坏与被加工轮廓的高低、转接圆弧半径的大小等有关。 3)零件铣削底平面时,槽底圆角半径r不应过大。 4)应采用统一的基准定位。在数控加工中,若没有统一基准定位,会因工件的重新安装而导致加工后的两个面上轮廓位置及尺寸不协调现象。因此要避免上述问题

16、的产生,保证两次装夹加工后其相对位置的准确性,应采用统一的基准定位。 零件上最好有合适的孔作为定位基准孔,若没有,要设置工艺孔作为定位基准孔(如在毛坯上增加工艺凸耳或在后续工序要铣去的余量上设置工艺孔)。若无法制出工艺孔时,最起码也要用经过精加工的表面作为统一基准,以减少两次装夹产生的误差。 此外,还应分析零件所要求的加工精度、尺寸公差等是否可以得到保证、有无引起矛盾的多余尺寸或影响工序安排的封闭尺寸等。3. 加工方法的选择与加工方案的确定(一) 加工方法的选择 加工方法的选择原则是保证加工表面的加工精度和表面粗糙度的要求。由于获得同一级精度及表面粗糙度的加工方法一般有许多,因而在实际选择时,

17、要结合零件的形状、尺寸大小和热处理要求等全面考虑。例如,对于IT7级精度的孔采用镗削、铰削、磨削等加工方法均可达到精度要求,但箱体上的孔一般采用镗削或铰削,而不宜采用磨削。一般小尺寸的箱体孔选择铰孔,当孔径较大时则应选择镗孔。此外,还应考虑生产率和经济性的要求,以及工厂的生产设备等实际情况。常用加工方法的经济加工精度及表面粗糙度可查阅有关工艺手册。(二) 加工方案确定的原则 零件上比较精密表面的加工,常常是通过粗加工、半精加工和精加工逐步达到的。对这些表面仅仅根据质量要求选择相应的最终加工方法是不够的,还应正确地确定从毛坯到最终成形的加工方案。 确定加工方案时,首先应根据主要表面的精度和表面粗

18、糙度的要求,初步确定为达到这些要求所需要的加工方法。例如,对于孔径不大的IT7级精度的孔,最终加工方法取精铰时,则精铰孔前通常要经过钻孔、扩孔和粗铰孔等加工。4. 工序与工步的划分(一) 工序的划分 在数控机床上加工零件,工序可以比较集中,在一次装夹中尽可能完成大部分或全部工序。首先应根据零件图样,考虑被加工零件是否可以在一台数控机床上完成整个零件的加工工作,若不能则应决定其中哪一部分在数控机床上加工,哪一部分在其他机床上加工,即对零件的加工工序进行划分。一般工序划分有以下几种方式:(二)工步的划分工步的划分主要从加工精度和效率两方面考虑。在一个工序内往往需要采用不同的刀具和切削用量,对不同的

19、表面进行加工。为了便于分析和描述较复杂的工序,在工序内又细分为工步。下面以加工中心为例来说明工步划分的原则: 1)同一表面按粗加工、半精加工、精加工依次完成,或全部加工表面按先粗后精加工分开进行。 2)对于既有铣面又有镗孔的零件,可先铣面后镗孔。按此方法划分工步,可以提高孔的精度。因为铣削时切削力较大,工件易发生变形。先铣面后镗孔,使其有一段时间恢复,减少由变形引起的对孔的精度的影响。 3)按刀具划分工步。某些机床工作台回转时间比换刀时间短,可采用按刀具划分工步,以减少换刀次数,提高加工效率。 总之,工序与工步的划分要根据具体零件的结构特点、技术要求等情况综合考虑。5.辅助工序的安排及工序间的

20、衔接(1)辅助工序的安排 工序包括检验、钳工去毛刺、特种检验和表面处理等。其中检验工序是主要的辅助工序,除了在每道工序中需要进行检验外,为了保证产品质量,必要时还应该安排专门的检验工序,即中间检验和成品检验。中间检验通常安排在粗加工全部结束后,精加工之前或重要工序前后,或工件从一个车间转向另一个车间前后。成品检验安排在工件全部加工结束之后,应按零件图的全部要求进行检验。 钳工去毛刺工序一般安排在检验工序之前或易于产生毛刺的工序之后,或下道工序作为定位基准的表面加工之后。对于形状复杂的工件,为了减少热处理变形,防止由于内应力集中而产生的裂纹,应在热处理之前安排钳工去毛刺工序。为了保证表面处理质量

21、,在表面处理之前应安排钳工去毛刺工序。 特种检验的种类较多,有无损检验、气密性检验、平衡性检验等。其中最常见的是无损检验如射线探伤、超声探伤、磁粉探伤等。 为了提高零件的抗腐蚀性、耐磨性、疲劳极限以及外观的美观性等,还常采用表面处理的方法。表面处理粗糙度变化一般均不大。但当零件的精度要求较高时,应进行工艺尺寸链的计算。(2) 工序间的衔接 有些零件的加工是由普通机床和数控机床共同完成的,数控机床加工工序一般都穿插在整个工艺过程之间,一定要注意解决好数控加工工序与非数控加工工序的衔接问题。例如,对毛坯热处理的要求;作为定位基准的孔和面的精度是否满足要求;是否为后道工序留有加工余量,留多大等,都应

22、该衔接好,以免产生矛盾。6.零件的安装与夹具的选择(一) 定位安装的基本原则 1)力求设计、工艺与编程计算的基准统一。 2)尽量减少装夹次数,尽可能在一次定位装夹后,加工出全部待加工表面。 3)避免采用占机人工调整式加工方案,以充分发挥数控机床的效能。(二)选择夹具的基本原则 数控加工的特点对夹具提出了两个基本要求:一是要保证夹具的坐标方向与机床的坐标方向相对固定;二是要协调零件和机床坐标系的尺寸关系。除此之外,还要考虑以下四点: 1)当零件加工批量不大时,应尽量采用组合夹具、可调式夹具及其他通用夹具,以缩短生产准备时间、节省生产费用。 2)在成批生产时才考虑采用专用夹具,并力求结构简单。 3

23、)零件的装卸要快速、方便、可靠,以缩短机床的停顿时间。 4)夹具上各零部件应不妨碍机床对零件各表面的加工,即夹具要开敞其定位、夹紧机构元件不能影响加工中的走刀(如产生碰撞等)。7.刀具的选择与切削用量的确定(一)刀具的选择 刀具的选择是数控加工工艺中重要内容之一,它不仅影响机床的加工效率,而且直接影响加工质量。编程时,选择刀具通常要考虑机床的加工能力、工序内容、工件材料等因素。 与传统的加工方法相比,数控加工对刀具的要求更高。不仅要求精度高、刚度好、耐用度高,而且要求尺寸稳定、安装调整方便。这就要求采用新型优质材料制造数控加工刀具,并优选刀具参数。 选取刀具时,要使刀具的尺寸与被加工工件的表面

24、尺寸和形状相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀。铣削平面时,应选硬质合金刀片铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选镶硬质合金的玉米铣刀。选择立铣刀加工时,刀具的有关参数,推荐按经验数据选取。曲面加工常采用球头铣刀,但加工曲面较平坦部位时,刀具以球头顶端刃切削,切削条件较差,因而应采用环形刀。在单件或小批量生产中,为取代多坐标联动机床,常采用鼓形刀或锥形刀来加工飞机上一些变斜角零件加镶齿盘铣刀,适用于在五坐标联动的数控机床上加工一些球面,其效率比用球头铣刀高近十倍,并可获得好的加工精度。(二)切削用量的确定 切削用量包括主轴转速(切削速度)、背吃刀

25、量、进给量。对于不同的加工方法,需要选择不同的切削用量,并应编入程序单内。 合理选择切削用量的原则是,粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。具体数值应根据机床说明书、切削用量手册,并结合经验而定。8. 对刀点与换刀点的确定 在编程时,应正确地选择“对刀点”和“换刀点”的位置。“对刀点”就是在数控机床上加工零件时,刀具相对于工件运动的起点。由于程序段从该点开始执行,所以对刀点又称为“程序起点”或“起刀点”。 对刀点的选择原则是:1.便于用数字处理和简化程序编制;2.在机床上找正容易,加工中便于检查

26、;3.引起的加工误差小。 对刀点可选在工件上,也可选在工件外面(如选在夹具上或机床上)但必须与零件的定位基准有一定的尺寸关系。 为了提高加工精度,对刀点应尽量选在零件的设计基准或工艺基准上,如以孔定位的工件,可选孔的中心作为对刀点。刀具的位置则以此孔来找正,使“刀位点”与“对刀点”重合。工厂常用的找正方法是将千分表装在机床主轴上,然后转动机床主轴,以使“刀位点”与对刀点一致。一致性越好,对刀精度越高。所谓“刀位点”是指车刀、镗刀的刀尖;钻头的钻尖;立铣刀、端铣刀刀头底面的中心,球头铣刀的球头中心。 零件安装后工件坐标系与机床坐标系就有了确定的尺寸关系。在工件坐标系设定后,从对刀点开始的第一个程

27、序段的坐标值;为对刀点在机床坐标系中的坐标值为(X0,Y0)。当按绝对值编程时,不管对刀点和工件原点是否重合,都是X2、Y2;当按增量值编程时,对刀点与工件原点重合时,第一个程序段的坐标值是X2、Y2,不重合时,则为(X1十X2)、Y1+ Y2)。 对刀点既是程序的起点,也是程序的终点。因此在成批生产中要考虑对刀点的重复精度,该精度可用对刀点相距机床原点的坐标值(X0,Y0)来校核。 所谓“机床原点”是指机床上一个固定不变的极限点。例如,对车床而言,是指车床主轴回转中心与车头卡盘端面的交点。加工过程中需要换刀时,应规定换刀点。所谓“换刀点”是佰刀架转位换刀时的位置。该点可以是某一固定点(如加工

28、中心机床,其换刀机械手的位置是固定的),也可以是任意的一点(如车床)。换刀点应设在工件或夹具的外部,以刀架转位时不碰工件及其它部件为准。其设定值可用实际测量方法或计算确定。9.加工路线的确定 在数控加工中,刀具刀位点相对于工件运动的轨迹称为加工路线。编程时,加工路线的确定原则主要有以下几点: 1)加工路线应保证被加工零件的精度和表面粗糙度,且效率较高。 2)使数值计算简单,以减少编程工作量。 3)应使加工路线最短,这样既可减少程序段,又可减少空刀时间。 度等情况,确定是一次走刀,还是多次走刀来完成加工以及在铣削加工中是采用顺铣还是采用逆铣等。 对点位控制的数控机床,只要求定位精度较高,定位过程

29、尽可能快,而刀具相对工件的运动路线是无关紧要的,因此这类机床应按空程最短来安排走刀路线。除此之外还要确定刀具轴向的运动尺寸,其大小主要由被加工零件的孔深来决定,但也应考虑一些辅助尺寸,如刀具的引入距离和超越量。 在数控机床上车螺纹时,沿螺距方向的z向进给应和机床主轴的旋转保持严格的速比关系,因此应避免在进给机构加速或减速过程中切削。为此要有引入距离1超越距离2。和的数值与机床拖动系统的动态特性有关,与螺纹的螺距和螺纹的精度有关。一般为25mm,对大螺距和高精度的螺纹取大值;一般取的14左右。若螺纹收尾处没有退刀槽时,收尾处的形状与数控系统有关,一般按45o收尾。 铣削平面零件时,一般采用立铣刀

30、侧刃进行切削。为减少接刀痕迹,保证零件表面质量,对刀具的切入和切出程序需要精心设计。铣削外表面轮廓时,铣刀的切入和切出点应沿零件轮廓曲线的延长线上切向切入和切出零件表面,而不应沿法向直接切入零件,以避免加工表面产生划痕,保证零件轮廓光滑。 铣削内轮廓表面时,切入和切出无法外延,这时铣刀可沿零件轮廓的法线方向切入和切出,并将其切入、切出点选在零件轮廓两几何元素的交点处。 加工过程中,工件、刀具、夹具、机床系统平衡弹性变形的状态下,进给停顿时,切削力减小,会改变系统的平衡状态,刀具会在进给停顿处的零件表面留下划痕,因此在轮廓加工中应避免进给停顿。 曲面时,常用球头刀采用“行切法”进行加工。所谓行切

31、法是指刀具与零件轮廓的切点轨迹是一行一行的,而行间的距离是按零件加工精度的要求确定的。第三章 零件图零件1零件2组合件1组合件2第四章 零件加工工艺的分析1. 零件图样的工艺分析该零件由圆柱面、螺纹、圆弧及中心孔组成,该零件的尺寸的尺寸精度和表面粗糙度要求很高,该图尺寸标注完整,轮廓描述清楚。材料为40Cr,无热处理和硬度要求通过以上描述,可以采取以下几点工艺措施: (一)对图样上给定的有精度要求的尺寸,因为公差数值很小,所以编程时不必取平均值,而全部取其基本尺寸即可。 (二)在轮廓曲线上,即有过象限圆弧,又有改变进给方向的轮廓曲线,因此在加工是应进行机械间隙补偿,以保证轮廓曲线的准确性。 (

32、三)坯件右端装夹,毛坯选60mm棒料。2.确定装夹方案 确定坯件轴线和左端面为定位基准。右端采用三爪定心卡盘定心夹紧、左端采用活动顶尖支承的装夹方式。3. 确定加工工序及进给路线加工顺序按由粗到精、由近到远的原则确定。即先从左到右进行粗车(留0.25mm精加工余量),然后从左到右进行精车,最后车削螺纹。零件1:先车左端面,再进行精车;然后掉头车右端面,再进行精车;零件2:车右端面,打中心孔,再进行精车。组合件1:把零件2的左端接在零件1的右端,再进行加工;组合件2也是如此。 CK6136数控机床具有粗车循环、精车循环和车螺纹循环的功能,只要正确使用编程指令,机床数控系统就会自行确定其进给路线,

33、因此,该零件的粗车循环和车螺纹循环不需要人为确定其进给路线。但精车的进给路线需要人为确定,该零件是从左到右沿零件表面轮廓进给。如图所示:走刀路线如图:组合件1组合件24. 选择刀具 (1)粗车选用硬质合金90外圆车刀,副偏角不能太小,以防与工件轮廓发生干涉,必要时应作图检验,本例取Kr=35。 (2)精车选用硬质合金90外圆车刀,副偏角不能太小,以防与工件轮廓发生干涉,必要时应作图检验,本例取Kr=35。 (3)车圆弧时选用硬质合金60外螺纹车刀,取刀尖角r=60,取刀尖圆弧半径r=0.150.2mm。车内螺纹时选用硬质合金60内螺纹车刀,取刀尖角r=60,取刀尖圆弧半径r=0.150.2mm

34、。 (4)镗内孔时选用硬质合金内镗孔刀。产品名称或代号零件名称组合件零件图号1,2序号刀具号刀具规格名称数量加工表面刀尖半径/mm备 注1T010190外圆车刀1车端面和外圆右偏刀2T0202内镗孔刀1通内孔3T030360内螺纹刀1攻内螺纹4T040460外螺纹刀1车圆弧编制审核批准共 页第 页5. 选择切削用量 (1)背吃到量 粗车循环时,确定其背吃到量p=3mm,精车时p=0.15mm. 式中dw-工件待加工表面直径,mm ;dm-工件已加工表面直径,mm (2)主轴转速 车直线和圆弧轮廓时的主轴转速 查表取粗车的切削速度Vc=90m/min,精车的切削速度Vc=120m/min,根据坯

35、件直径(精车时取其平均值),利用公式计算,并结合机床说明书选取;粗车时,主轴转速n=600r/min;精车时,主轴转速n=800r/min.车削主轴转速计算公式 n=1000V/d 车螺纹时的主轴转速 用式(5-4)计算,取主轴转速n=720r/min。 式(5-4) n=(1200/P)-K P被加工螺纹螺距;K保险系数,一般为80 镗内孔时的主轴转速 用式(4-6)计算,取主轴转速n=500r/min. 式(4-6)镗孔时主轴转速计算公式 n=1000V/d (3)进给速度 进给速度Vf= n f 先选其进给量,然后计算进给速度。粗车时,选取进给量f=0.4mmm/r,精车时,选取进给量f

36、=0.15mm/r,计算得:粗车进给速度Vf=200mm/min;精车进给速度Vf=180mm/min。车螺纹的进给量等于螺纹导程,即f=1.5mm/r。短距离空行程的进给速度取Vf=300mm/min;粗镗内孔时,取其进给量f=0.4mm/r,精镗内孔时,取其进给量f=0.15 mm/r,计算得:粗车进给速度Vf=200mm/min;精车进给速度Vf=180mm/min。 第五章 程序分析组合件1零件一O100N010 T0101 90外圆车刀主轴用1号刀N020 M03 S600主轴正转,转速600N030 G00 G40 G90 G95 X62 Z2 加工零件左端绝对值,快速定位到(62

37、,2)N035 G71 U1 R0.5外圆粗切循环N040 G71 P50 Q130 U0.4 W0 F0.2粗加工程序第一个程序段,进给速度为0.2N050 G01 G42 X0 Z0 F0.1直线插补到(0,0) 进给速度为0.1,N060 X30直线插补到(30,0)N070 X32 Z-1 车 32倒角1X45直线插补到(32,-1)N080 Z-7 车 32直线插补到(32,-7)N090 G01 X46 Z-18直线插补到(46, -18)N100 G03 X54 Z-32 R27 F0.15 车R27圆弧N110 G01 Z-38.5 车54直线插补到(54,-38.5)N120

38、 X57直线插补到(57,-38.5)N130 Z-50 粗加工程序最后一个程序段直线插补到(57,-50) 车57N140 G00 X100 Z100 M05快速定位到(100,100) 主轴停止N150 G00 G40 G90 G95 X62 Z2绝对值,快速定位到(62,2)N160 M03 S800主轴正转,转速800N170 G70 P70 Q140精加工循环N180 G00 X100 Z100 M05快速定位到(100,100) 主轴停止N190 M02程序停止换头O200N010 T0101 90外圆车刀N020 M03 S600主轴正转,转速600N030 G00 G40 G9

39、0 G95 X62 Z2 加工零件右端绝对值,快速定位到(62,2)N040G71 U1 R0.5外圆粗切循环N050 G71 P60 Q170 U0.4 W0 F0.2粗加工程序第一个程序段,进给速度为0.2N060 G01 G42 X0 Z0 F0.1直线插补到(0,0), 进给速度为0.1N070 X18直线插补到(18,0)N080 G03 X25.8847 Z-15.405 R24.9 F0.15 车R24.9圆弧N090 G02 X22.7258 Z-24.6367 R28.7 F0.15 车R28.7圆弧N100 G02 X26 Z-37 R12 F0.15 车12圆弧N110

40、G01 Z-46 F0.1 车 26 直线插补到(26,-46), 进给速度为0.1N120 X29直线插补到(29,-46)N130 X31 Z-47 倒角1X45直线插补到(31,-47)N140 G01 Z-60 车 31直线插补到(31,-60)N150 X57直线插补到(57,-60)N160 G02 X57 Z-70 R10 F0.15 车R10圆弧直线插补到(57,-70) 粗加工程序最后一个程序段 N170 G00 X100 Z100 M05快速定位到(100,100) 主轴停止N180 G00 G40 G90 G95 X60 Z2绝对值,快速定位(60,2) N190 M03

41、 S800主轴正转,转速800N200 G70 P70 Q170精加工循环N210 G00 X100 Z100 M05快速定位到(100,100) 主轴停止N230 M02程序停止零件二O300钻28的孔 孔长60mmN010 T0202 内镗孔刀 N020 G90 G95 G00 X60 Z2 加工零件右端绝对值,快速定位到(62,2)N030 M03 M08 S500主轴正转,转速500,切削液开N040 G71 U1 R0.5外圆粗切循环N050 G71 P60 Q140 U-0.4 F0.2粗加工程序第一个程序段,进给速度为0.2N060 G01 X54 Z0 F0.1 S800直线插

42、补到(54,0),进给速度为0.1,转速800N070 G03 X44 Z-17 R27 F0.15 车R27圆弧N080 G01 X32 Z-26直线插补到(32,-26)N090 Z-34 车32 内孔N100 X28直线插补到(28,-34)N110 Z-46直线插补到(28,-46)N120 X31直线插补到(31,-46)N130 Z-59 车31 内孔直线插补到(31,-59)N140 X33 Z-60 倒角1X45直线插补到(33,-60) 粗加工程序最后一个程序段N150 G00 X100 Z100 M05快速定位到(100,100) 主轴停止N160 G00 G40 G90

43、G95 X62 Z2绝对值,快速定位(62,2)N170 M03 S800主轴正转,转速800N180 G70 P60 Q140精加工循环N190 G00 X100 Z100 M05快速定位到(100,100) 主轴停止N200 M09 M02切削液关,程序停止N210 T0303 60内螺纹刀 N220 M03 M08 S720主轴正转,转速720,切削液开N230 G90 G95 G40 G00 X30 Z-32绝对值,快速定位到(30,-32)N240 G76 P021060 Q100 R0.1螺纹切削循环N250 G76 X28.376 Z-50 R0 P1299 Q400 F1.5螺

44、纹定位(28.376,-50),进给速度为1.5N260 G00 X100 Z100 M09 M05快速定位到(100,100),切削液关,主轴停止N270 M02程序停止将零件二左边接在零件一的右边O400N010 T0404 60外螺纹刀N020 G00 G40 G90 G95 X60 Z2绝对值,快速定位到(60,2)N030 M03 S600主轴正转,转速600N040 G71 U1 R0.5外圆粗切循环N050 G71 P60 Q100 U0.4 W0 F0.2粗加工程序第一个程序段,进给速度为0.2N060 G01 X57 Z-9.078直线插补到(57,-9.078)N070 G03 X45.666 Z-23.026 R20 F0.15 车R20圆弧N080 G02 X46.772 Z-37.5 R10 F0.15 车R10圆弧N090 G03 X51.114 Z-49.775 R10 F0.15 车R10圆弧N100 G

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 成人教育


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号