自动控制原理课件5.ppt

上传人:laozhun 文档编号:2948717 上传时间:2023-03-05 格式:PPT 页数:54 大小:1.38MB
返回 下载 相关 举报
自动控制原理课件5.ppt_第1页
第1页 / 共54页
自动控制原理课件5.ppt_第2页
第2页 / 共54页
自动控制原理课件5.ppt_第3页
第3页 / 共54页
自动控制原理课件5.ppt_第4页
第4页 / 共54页
自动控制原理课件5.ppt_第5页
第5页 / 共54页
点击查看更多>>
资源描述

《自动控制原理课件5.ppt》由会员分享,可在线阅读,更多相关《自动控制原理课件5.ppt(54页珍藏版)》请在三一办公上搜索。

1、第五章 控制系统的频率特性分析法,第五章 控制系统的频率特性分析法5.1 频率特性的基本概念5.2 频率特性的表示方法5.3 典型环节的频率特性5.4 系统开环频率特性绘制5.5 用频率法分析系统的稳定性5.6 用频率法分析系统的稳态特性5.7 用开环频率特性分析系统的动态性能5.8 用闭环频率特性分析系统性能5.9 传递函数的实验求取,第五章 控制系统的频域特性分析1 频率特性的基本概念,一频率特性,a.RC网络,1.频率特性的基本概念,5.2 频率特性的表示方法一、代数解析法 其中,图形表示,工程上常用极坐标图(yquist)和对数频率特性图(Bode)来表示频率特性,)系统或环节的频率特

2、性,是以实参量为变量的复数,,对一确定的频率值,如果将该值所对应的频率特性复数的向量表示形式在复平面上描出,向量的终点是复平面上的一个点,当变量从变化到时,这些动点的轨迹,就描出了一曲线,我们称之为yquist曲线,)若先对频率特性,求取对数运算,由复变函数的对数,定义可知,所求对数仍为一个复数,实部为该复数模的对数,虚部为该复数的幅角即:,这时对应两个以频率为变量的函数将这两个函数分别以为变量进行绘图,可得到两张图,一张图为与幅值相关的图,一张为与相位相关的图,现对这两张图稍作修正,与幅值相关的图的纵坐标(单位为分贝),而与相位相关的图的纵坐标保持不动(单位为度)两张图的横坐标相同,表示频率

3、,但以标度,单位是rad/s,这样所形成的两张图总称为对数频率特性图(ode图),与幅值相关的图称为对数幅频特性图,另一张称为对数相频图,5.3 典型环节的频率特性一、比例环节1.代数表达式 传递函数 频率特性 幅频特性 相频特性2.频率特性图(1)极坐标图,(2)伯德图作法:1)对数幅频图 2)对数相频图二、积分环节的频率特性1.代数表达式 传递函数 频率特性 幅频特性 相频特性2.频率特性图1)对数幅频特性,斜率-20/十倍频程,2)对数相频特性图如果有个积分环节串联,则有 若=2时,,三、惯性环节1.代数表达式传递函数频率特性幅频特性相频特性2.图形表达式1)极坐标图,2.频率特性图1)

4、对数幅频特性图渐近特性曲线的作法:a.当T1(1/T)时,系统处于高频段此直线方程过(1/T,0)点且斜率为-20dB/十倍频程,精确曲线的作法:在渐近线上修正分析:*最大误差在,曲线修正表:2)对数相频特性曲线,以此点为对称点,四、振荡环节1.代数表达式传递函数频率特性幅频特性相频特性,2.频率特性图1)极坐标图重要性质:当00.707时,幅频特性出现峰值。谐振频率p:谐振峰值Mp:,越小,Mp越大,2)伯德图分析:a.当T1(1/T)时,系统处于高频段,精确曲线的作法:在渐近线上修正分析:,注意:在工程上,当满足0.40.7时,可使用渐近对数幅频特性;在此范围之外,应使用准确的对数幅频特性

5、。2)对数相频特性曲线,五、微分环节1.代数表达式传递函数频率特性2.频率特性图1)极坐标图,2)伯德图注意:纯微分、一阶微分和二阶微分的幅频特性和相频特性,在形式上分别是积分、惯性和振荡环节的相应特性的倒数。因此,在半对数坐标中,纯微分环节和积分环节的对数频率特性曲线相对于频率轴互为镜相;一阶微分环节和惯性环节的对数频率特性曲线相对于频率轴互为镜相;二阶微分环节和振荡环节的对数频率特性曲线相对于频率轴互为镜相。,六、延时环节1.代数表达式传递函数频率特性幅频特性相频特性2.频率特性图1)极坐标图2)伯德图,5.4 系统开环频率特性绘制分析:方法:利用典型环节的频率特性(1)分别计算出各典型环

6、节的幅频特性和相频特性;(2)各典型环节的幅频特性相乘得到系统的幅频特性,各典型环节的相频 特性相加得到系统的相频特性。(3)给出不同的值,计算出相应的A()和(),描点连线。,极坐标图的近似作法:(1)起点(=0):0型:在实轴上K点 1型:在负虚轴的无穷远处与系统的型号有关 2型:在负实轴的无穷远处 3型:在正虚轴的无穷远处分析:,(2)终点(=):在原点,且当n-m=1时,沿负虚轴趋于原点 当n-m=2时,沿负实轴趋于原点 当n-m=3时,沿正虚轴趋于原点分析:,(3)与虚轴的交点:(4)与实轴的交点:例,二、对数频率特性的绘制1.对数幅频特性方法一:典型环节频率特性相加方法二:按下面的

7、步骤进行:(1)在半对数坐标纸上标出横轴及纵轴的刻度。(2)将开环传递函数化成典型环节乘积因子形式,求出各环节的交接频率,标在频率轴上。(3)计算20lgK,K为系统开环放大系数。(4)在=1处找出纵坐标等于20lgK的点“A”;过该点作一直线,其斜率等于-20(db/dec),当取正号时为积分环节的个数,当取负号时为纯微分环节的个数;该直线直到第一个交接频率1对应的地方。若11,则该直线的延长线以过“A”点。,(5)以后每遇到一个交接频率,就改变一次渐近线的斜率:遇到惯性环节的交接频率,斜率增加-20db/dec;遇到一阶微分环节的交接频率,斜率增加+20db/dec;遇到振荡环节的交接频率

8、,斜率增加-40db/dec;遇到二阶微分环节的交接频率,斜率增加+40db/dec;直至经过所有各环节的交接频率,便得系统的开环对数幅频渐近特性。若要得到较精确的频率特性曲线,可在振荡环节和二阶微分环节的交接频率附近进行修正。2.对数相频特性方法一:典型环节相频特性相加方法二:利用系统的相频特性表达式,直接计算出不同的数值时对应的相移角描点,再用光滑曲线连接。,例1 已知某系统的开环传递函数为试绘出系统的开环对数幅频特性。解:系统由八个环节组成:两个积分环节;三个惯性环节;两个一阶微分环节,它们的交接频率分别为是,按方法二有关步骤,绘出该系统的开环对数幅频特性。3.对数幅频特性与相频特性间的

9、关系 什么是最小相位系统?若一个系统的开环传递函数在右半S平面有具有极点及零点,并且不具有纯时间延迟因子,此系统称为最小相位系统。否则,称为非最小相位系统。这种对应关系是:对数频率特性的斜率为-20N(db/dec)时,对应的相角位移是-90N。对数幅频特性与相频特性之间的关系是惟一确定的。,5.5 用频率法分析闭环系统的稳定性一、在极坐标图中的奈氏判据闭环系统稳定的充分必要条件1.若开环传递函数有正极点,且个数为P。闭环系统稳定的充要条件是,开环幅相特性曲线,当从-变化到+时,逆时针包围(-1,j0)点的圈数N=P。否则系统不稳。2.若开环传递函数无正极点,即个数为P=0。闭环系统稳定的充要

10、条件是,开环幅相特性曲线,当从-变化到+时,不包围(-1,j0)点,即圈数N=0。否则系统不稳。用式子表示要闭环系统稳定,必须Z=0。注:逆时针时圈数取“正”,顺时针时圈数取“负”。,例1 某单位反馈系统,开环传递函数为,试用奈氏判据判别系统稳定性。解:由开环传递函数可知,有一个正极点,即P=1;:0时,逆时针包围(-1,j0)点一圈,即N=1。Z=P-N=0所以系统稳定。二、对奈氏判据的两点说明1.含有积分环节时奈氏判据的使用当含有积分环节时,曲线将不封闭,这时需要作增补特性,即从0-按顺时针方向,半径为,作圈弧连接0+。得到封闭曲线后再使用奈氏判据。,增补特性:2.实际的应用方法只需用:0

11、时的开环频率特性曲线。这时,奈氏判据的数学表达式变为:其中N表示当:0时的开环频率特性曲线围绕(-1,j0)点的圈数。,例2 某单位反馈系统,开环传递函数为,试用奈氏判据判别系统稳定性。解:考虑积分环节的增补频率特性,开环系统幅相频率特性表示如下:由系统开环传递函数表达式中可知 P=0从图中可知 N=-1 Z=p-N=2,例:,例3 若系统开环传递函数为试用奈氏判据判别闭环系统的稳定性。解:由图可知,对数相频特性对-180的正、负穿越各一次。又由于开环传递函数无正极点,即P=0。根据奈氏判据,闭环系统是稳定的。,5.6 用频率法分析闭环系统的稳态性能一、在伯德图上找因为在对数幅频图上的低频段的

12、斜率与积分环节的个数有关。二、在伯德图上找K1.0型系统(=0),2.1型系统斜率为-20db/dec的低频段渐近特性或其延长线,在=1时的分贝数由开环放大系数K的值决定。斜率为-20db/dec的低频段渐近特性或其延长线与横轴的交点的频率值与开环放大系数K相等。3.2型系统斜率为-40db/dec的低频段渐近特性或其延长线,在=1时的分贝数由开环放大系数K的值决定。斜率为-40db/dec 的低频段渐近特性或其延长线与横轴的交点的频率值的平方与开环放大系数K相等。,5.7 用开环频率特性分析系统的动态性能一、开环频域性能指标1.截止频率c对数幅频特性等于0分贝时的值,即截止频率c表征响应的快

13、速性能,c越大,系统的快速性能越好。,2.相位裕度(c)相频特性曲线在=c时的相角值(c)与-180之差。相位裕量的物理意义是,为了保持系统稳定,系统开环频率特性在=c时所允许增加的最大相位滞后量。对于最小相位系统,相位裕度与系统的稳定性有如下关系:3.增益裕量G.M.(幅值裕量)相角为-180这一频率值g所对应的幅值倒数的分贝数。增益裕量的物理意义是,为了保持系统稳定,系统开环增益所允许增加的最大分贝数。,对于最小相位系统,增益裕度与系统的稳定性有如下关系:4.中频宽度h开环对数幅频特性以斜率为-20dB/dec过横轴的线段宽度h,称为中频宽度。h的长短反映了系统的平稳程度,h愈大,系统的平

14、稳性越好。二、性能指标与中频段特性若中频段的斜率为-20dB/dec,则h愈宽,(c)愈大,平稳性越好,c越大,则快速性越好。中频段的斜率为-40dB/dec,h愈宽,平稳性越差。中频段的斜率为-60dB/dec,系统不稳定。重要结论:控制系统要具有良好的性能,中频段的斜率必须为-20dB/dec,而且要有一定的宽度(通常为510);应提高截止频率来提高系统的快速性。,三、三频段与系统性能的关系 1.低频段 反映系统的控制精度 2.中频段 反映控制系统的动态性能 3.高频段 反映系统的抗干扰能力,斜率越负,抗干扰能力越强。四、频域性能与时域性能的关系对于二阶系统1.c与%的关系结论:相位裕量增

15、加,超调量下降,系统动态过程平稳性变好。2.c与ts的关系在00.4时,0.85 n c n,,说明在此范围内c 可以替代n。结论:当不变时,c越大,ts越小,系统的快速性能越好。,5.8 用闭环特性曲线分析系统性能一、闭环频率特性典型的闭环频率特性曲线(1)零度幅值M(0)频率为0(或低频)时的幅值。(2)谐振峰值Mp闭环幅频特性的最大值。(3)谐振频率p出现谐振峰值时的频率值。(4)频带宽度0b从0频到b称为频带宽度。b是闭环频率特性幅值减小到0.707M(0)时的频率,称为截止频率。,二、闭环频率特性和系统过渡过程的关系1.闭环幅频特性的低频区 闭环幅频特性M()中靠近零频的低频区特性即

16、M(0)附近,反映了 控制系统的稳态性能,即控制精度。结论:若M(0)1,说明系统是0型系统,单位阶跃下无稳态误差;若M(0)=1,说明系统是1型或2型系统,单位阶跃下无稳态误差;2.闭环幅频特性的中频区 闭环幅频特性的谐振峰值Mp反映控制系统的平稳性,谐振频率p 反映控制系统的快速性。对于二阶系统有如下关系:结论:Mp的值越小,则超调量超小,系统的动态过程的平稳性越好。p(或b)越大,频带就越宽,系统的快速性能越好。,第五章小结 定义和几何表示频率特性 典型环节及开环系统的幅相特性(极坐标图)绘制 典型环节及开环系统的对数频率特性(伯德图)频率稳定判据(奈氏判据)稳定性分析 相角裕度 稳定裕度 幅值裕度 典型二阶系统的时域指标估算动态性能分析 高阶系统的时域性能指标估算 根据闭环频域指标估算时域指标 低频段:决定系统的稳态性能三频段与系统性能的关系 中频段:决定系统的稳定性及动态性能 高频段:决定系统的抗高频干扰能力,频域分析法,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号