尼科尔森《微观经济理论基本原理与扩展》课后习题详解.docx

上传人:小飞机 文档编号:3102693 上传时间:2023-03-10 格式:DOCX 页数:16 大小:42.54KB
返回 下载 相关 举报
尼科尔森《微观经济理论基本原理与扩展》课后习题详解.docx_第1页
第1页 / 共16页
尼科尔森《微观经济理论基本原理与扩展》课后习题详解.docx_第2页
第2页 / 共16页
尼科尔森《微观经济理论基本原理与扩展》课后习题详解.docx_第3页
第3页 / 共16页
尼科尔森《微观经济理论基本原理与扩展》课后习题详解.docx_第4页
第4页 / 共16页
尼科尔森《微观经济理论基本原理与扩展》课后习题详解.docx_第5页
第5页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《尼科尔森《微观经济理论基本原理与扩展》课后习题详解.docx》由会员分享,可在线阅读,更多相关《尼科尔森《微观经济理论基本原理与扩展》课后习题详解.docx(16页珍藏版)》请在三一办公上搜索。

1、尼科尔森微观经济理论基本原理与扩展课后习题详解Born to win 经济学考研交流群 点击加入 尼科尔森微观经济理论-基本原理与扩展 第2章 最优化的数学表达 课后习题详解 跨考网独家整理最全经济学考研真题,经济学考研课后习题解析资料库,您可以在这里查阅历年经济学考研真题,经济学考研课后习题,经济学考研参考书等内容,更有跨考考研历年辅导的经济学学哥学姐的经济学考研经验,从前辈中获得的经验对初学者来说是宝贵的财富,这或许能帮你少走弯路,躲开一些陷阱。 以下内容为跨考网独家整理,如您还需更多考研资料,可选择经济学一对一在线咨询进行咨询。 1已知U(x,y)=4x2+3y2。 计算偏导数Ux,Uy

2、。 求出上述偏导数在x=1,y=2处的值。 写出U的全微分。 计算dU=0时dy/dx的值这意味着当U保持不变时,x与y的替代关系是什么? 验证:当x=1,y=2时,U=16。 当保持U=16时,且偏离x=1,y=2时,x和y的变化率是多少? 更一般的,当U=16时,该函数的等高线是什么形状的?该等高线的斜率是多少? 解:对于函数U(x,y)=4x2+3y2,其关于x和y的偏导数分别为: UU=6y =8x,yx当x=1,y=2时,中的偏微分值分别为: Ux=8, x=1Uy= 12 y=2U的全微分为: dU=UUdx + dy= 8xdx+ 6ydy xydy-8x-4x。 =dx6y3y

3、当dU=0时,由可知:8xdx + 6ydy = 0,从而可以解得:将x=1,y=2代入U的表达式,可得:U=41+34=16。 由可得,在x=1,y=2处,当保持U=16不变,即dU=0时,有: dy-41 = = - 2/3 dx32当U=16时,该函数变为:4x2+3y2=16,因而该等高线是一个中心在原点的椭圆。由可知,该等高线在处的斜率为:985/211历年真题解析,答案,核心考点讲义,你想要的都在这 经济学历年考研真题及详解 dy4x = -。 dx3yBorn to win 经济学考研交流群 点击加入 2假定公司的总收益取决于产量,即总收益函数为:R=70q-q2; 总成本也取决

4、于产量:C=q2+30q+100。 为了使利润最大化,公司的产量水平应该是多少?利润是多少? 验证:在中的产量水平下,利润最大化的二阶条件是满足的。 此处求得的解满足“边际收益等于边际成本”的准则吗?请加以解释。 解:公司的利润函数为: p=R-C=-2q2+40q-100 利润最大化的一阶条件为: dp = -4q + 40=0 dq从而可以解得利润最大化的产量为: q* = 10; 相应的最大化的利润为:p*= -2102 + 4010 - 100 = 100。 d2p*在q= 10处,利润最大化的二阶条件为:2 = -40,因而满足利润最大化的二dq阶条件。 在q*= 10处,边际收益为

5、:MR =边际成本为:MC = dR= 70 - 2q*=50; dqdC = 2q*+30=50; dq因而有MR=MC=50,即“边际收益等于边际成本”准则满足。 3假设f(x,y)=xy。如果x与y的和是1,求此约束下f的最大值。利用代入消元法和拉格朗日乘数法两种方法来求解此问题。 解:代入消元法 由x+y=1可得:y=1-x,将其代入f可得: f=xy=x-x2。 从而有:df = 1 - 2x = 0,可以解得:x =0.5。从而y=1-x = 0.5,f =0.25。 dx拉格朗日乘数法 f的最大值问题为: maxxys.t. x+y=1构造拉格朗日函数为: L=xy+l(1-x-

6、y) 一阶条件为: 985/211历年真题解析,答案,核心考点讲义,你想要的都在这 经济学历年考研真题及详解 Born to win 经济学考研交流群 点击加入 L = y - l = 0xL = x -l = 0 yL =1- x -y =0l从而可以解得:x=y=0.5,因而有:f=xy=0.25。 4对偶函数为: minx+ys.txy=0.25利用拉格朗日乘数法求解上述最小化问题。 解:设最小化问题的拉格朗日函数为: L=x+y+l(0.25-xy) 一阶条件为: L=1-ly=0xL =1-lx=0yL=0.25-xy=0l从而有:x=y,xy=x2=0.25,从而可以解得:x=y=

7、0.5。 5以一定的力垂直上抛的小球的高度是其被抛出时间的函数: f(t)=-0.5gt2+40t 其中,g是由重力所决定的常数。 小球处于最高处的时间t如何取决于参数g? 利用你在问中的答案来描述:随着参数g的变化,小球的最大高度如何变化。 利用包络定理直接给出问中的答案。 在地球上,g=32,但是这个值在某些地区会有差异。如果两个地方重力加速度的差异为0.1,则在上述两个地区所抛出的小球的最大高度之间的差异是多少? 解:对高度函数f(t)=-0.5gt2+40t关于时间求导数可得: df = -gt + 40 = 0 dt从而可以解得使高度最大的时间为:t*=g成反比例关系。 40,从而可

8、知小球处于最高处的时间t与参数g985/211历年真题解析,答案,核心考点讲义,你想要的都在这 经济学历年考研真题及详解 将t*=Born to win 经济学考研交流群 点击加入 40代入高度函数中可得: g4040800f(t*)=-0.5g+40= ggg2从而有:df(t*)dg=-8000,即:随着g的增大,最大高度将变小。 g22f1 = - (t*)取决于g,因为t*取决于g。 g22由包络定理可知:240f-800因而有: = -0.5(t*)=-0.5=20。 ggg当g=32时,最大高度为:f=800/32=25; 当g=32.1时,最大高度为:f=800/32.1=24.

9、92; 因而两地最大高度的差异为:Df=f-f=24.92-25=-0.08。 6制作一个油轮模型的一个简单的方法是,首先选择一块宽为x英尺、长为3x英尺的长方形钢板,接着在每个角处减去一个边长为t英尺的正方形,然后叠起剩余的四边做成一个无盖的托盘。 图2-1 油轮模型的制作 验证:该托盘可装油的体积为: V=t(x-2t)(3x-2t)=3tx2-8t2x+4t3 t应该如何选择,才能使给定x下的V最大? 是否存在一个x使得所装油的体积最大? 假设一个造船商受到限制,只能用1000000平方英尺的钢板来建造一个油轮。该约束条件可以用方程3x2-4t2=1000000来表示。如何将该受约束的最

10、大化问题的解与和问中的解进行比较? 解:如图2-1所示,长方形四个角处去掉一个边长为t的正方形后叠起来的托盘是一个长方体,该长方体的长为,宽为,高为t,因而其体积为: V=t(x-2t)(3x-2t)=3tx2-8t2x+4t3 由体积函数为V=t(x-2t)(3x-2t)=3tx2-8t2x+4t3,体积最大化的一阶条件为: 985/211历年真题解析,答案,核心考点讲义,你想要的都在这 经济学历年考研真题及详解 Born to win 经济学考研交流群 点击加入 V=3x2-16xt+12t2=0 t16x256x2-144x216x10.6x从而可以解得:t=,即:t1=0.225x,t

11、2=1.11x。 =24242V2V二阶条件为:2=-16x+24t,只有当t=0.225x时,才有2=-16x+24t0。 tt即只有当t=0.225x才能使给定x下的V最大。 当t=0.225x时,V0.67x3-0.04x3+0.05x30.68x3。因而当x增大时,V随之增大,没有极限。因此,不存在一个x使得所装油的体积最大。 受约束的最优化问题为: maxV=3tx2-8t+4t3s.t3x2-8t2=1000000设拉格朗日函数为: L=3tx2-8t2x+4t3+l(1000000-3x2+4t2) 一阶条件为: L=3x2-16tx+12t2+8lt=0tL =6tx-8t2-

12、6lx=0xL=1000000-3x2+4t2=0l从而可以利用拉格朗日乘数法求得最优的t*、x*。显然,该受约束的最大化问题的解将有别于和中求解出来的解。 7考虑如下受约束的最优化问题: maxy=x1+5lnx2s.tk-x1-x2=0其中k是一个可以被赋予任何特定值的常数。 验证:如果k=10,则此问题可以视为仅包括一个等式约束的问题的求解。 验证:当k=4时,此问题的解要求x1=-1。 如果此问题的解x须为非负,则当k=4时,最优解是什么? 当k=20时,此问题的解是什么?通过将此解与问中的解比较,你可以得出什么结论? 解:设拉格朗日函数为: L=x1+5lnx2+l(k-x1-x2)

13、 一阶条件为: 985/211历年真题解析,答案,核心考点讲义,你想要的都在这 经济学历年考研真题及详解 Born to win 经济学考研交流群 0; 方程2.114为:f11f22-2f12f1f2+f22f120。 证明:由凹函数和拟凹函数的定义可知: 函数f(x),对定义域S上任意两点x1,x2S,q0,1,如果有f)+(1-q)f(x)2,则称函数f(x)为凹函数。 qx1+(1-q)x2qf(x1函数f(x),对定义域S上任意两点x1,x2S,q0,1,如果有f),(ff(1x1+(1-q)x2qxmin)2x,则称函数f(x)为拟凹函数。 可知,对于凹函数有: fqx1+(1-q

14、)x2qf(x1)+(1-q)f(x2)minf(x1),f(x2) 因而可以从凹函数推出拟凹函数,反之,则不成立。 直观的,从图形上看,函数f(x)为拟凹表示线段x1、x2之间的点的函数值要高于点A,或者说曲线ACB之间的点都高于点A。显然,当函数f(x)是凹函数,曲线呈一个倒置的锅,则上述性质是满足的。从这一点看,凹函数一定是拟凹函数。但是,这不是必要的。如图2-2所示,在曲线AC段,函数是凹的;而在CB段,函数是凸的。这说明拟凹函数的概念要比凹函数更弱。 985/211历年真题解析,答案,核心考点讲义,你想要的都在这 经济学历年考研真题及详解 Born to win 经济学考研交流群 点

15、击加入 图2-2 凹函数与拟凹函数 a b9柯布-道格拉斯函数:y= x1x2 ,其中,a和b都是小于1的正的常数。 利用方程f11f22-2f12f1f2+f22f12c的集合都是凸的,来验证柯布道格拉斯函数是拟凹函数。 验证:如果a+b1,则柯布道格拉斯函数不是凹函数。 证明:分别对柯布-道格拉斯函数求一阶、二阶导数可得: a - 1bf1=ax1 x2 0ab - 1f2=bx1x2 0a- 2bf11=a(a- 1) x1x20 ab-2f22=b(b- 1)x1x2 0从而可得:f11f22-2f12f1f2+f22f120时,x2是x1的凸函数。关于拟凹函数的一个重要性质是,如果函

16、数f(x)是拟凹的,则当且仅当集合S=xf(x)k是凸集,其中k是任意常数。集合S=xf(x)k为函数f(x)的上等值集合。 由方程2.98可知: 22a-22b-2222a-22b-2 = ab(a-1)(b- 1)x1f11f22 -f12x2- abx1x22a- 22b-2=ab(1- b- a) x1x2当a+b1时,该式是负的,因而此时函数不是凹函数,从而可知,并非所有的拟凹函数都是凹函数。 985/211历年真题解析,答案,核心考点讲义,你想要的都在这 经济学历年考研真题及详解 Born to win 经济学考研交流群 点击加入 10幂函数y=xd,其中,0d1。 证明:此函数是

17、凹函数。注意到当d=1的特殊情况,以及仅当d1时,该函数才是“严格”凹的。 dd+x2证明:幂函数的多元形式y=f(x1,x2)=x1也是一个凹函数。解释在这种情况下,为什么f12=f21=0使得凹形的确定变得极其简单。 一种将“规模”效应融入该函数的方法是,对问中的函数进行单调变换: ddg(x1,x2)=yg=(x1+x2) g其中,g是一个正的常数。这种变换是否仍保持函数的凹性?g是拟凹的吗? 证明:当0d1时,因为y=dxd-10,y=d(d-1)xd-20,所以此时函数y=xd是严格凹函数。 dd+x2对于幂函数y=f(x1,x2)=x1,有:f1=d(x1)d-1,f11=d(d-1)(x1)d-2;f2=d(x2)d-1,f22=d(1-d)(x2)d-2。 2因为f11,f220满足,因而该函数是凹函数。 因为yg是拟凹函数,所以g是拟凹函数。但是,当g1时,yg不是凹函数。所2有这些结论可以通过对y的偏微分以及方程f11f22-f120和f11f22-2f12f1f2+f22f12:经济学考研解题技巧 跨考经济学考研辅导提醒您: 成功的原因千千万,失败的原因就那么几个,加入我们的经济学考研交流群,考研经验交流,规避风险,锁定名校一次进! 985/211历年真题解析,答案,核心考点讲义,你想要的都在这 经济学历年考研真题及详解

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号