物理化学第二章课件.ppt

上传人:小飞机 文档编号:3410464 上传时间:2023-03-13 格式:PPT 页数:104 大小:4.61MB
返回 下载 相关 举报
物理化学第二章课件.ppt_第1页
第1页 / 共104页
物理化学第二章课件.ppt_第2页
第2页 / 共104页
物理化学第二章课件.ppt_第3页
第3页 / 共104页
物理化学第二章课件.ppt_第4页
第4页 / 共104页
物理化学第二章课件.ppt_第5页
第5页 / 共104页
点击查看更多>>
资源描述

《物理化学第二章课件.ppt》由会员分享,可在线阅读,更多相关《物理化学第二章课件.ppt(104页珍藏版)》请在三一办公上搜索。

1、第二章 热力学第二定律,课前回顾,2.可逆过程,理想化过程,要求经过一个循环后体系和环境都能恢复到原来的状态,2.1自发变化的共同特征,它们的逆过程都不能自动进行。当借助外力,体系恢复原状后,会给环境留下不可磨灭的影响。(后果不可消除)均为热力学不可逆过程。,例如:,(3)水往低处流;(有势差存在),(1)气体向真空膨胀;(有压力差存在),(2)热量从高温物体传入低温物体;(有温差存在),(4)浓度不等的溶液混合均匀;(存在着浓差),2.2自发变化不可逆症结,这个机器把热量全部转化为功而不引起环境的变化,也是一类永动机,称为第二类永动机,2.2自发变化不可逆症结,T1高温热源,T2低温热源,M

2、,Q1,Q2,W,2.3 热力学第二定律(The Second Law of Thermodynamics),克劳修斯(Clausis)的说法:“不可能把热从低温物体传到高温物体,而不引起其它变化。”,开尔文(Kelvin):“不可能从单一热源取出热使之完全变为功,而不发生其它的变化。”,症结是一致的:不可能存在所需要的那种热机第二类永动机:是一种热机,它只是从单一热源吸热使之完全变为功而不留下任何影响。,2.4自发变化不可逆症结,同前面例子相似,要求热全部转化为功而不引起环境的变化(不可能实现),T1高温热源,T2低温热源,M,Q1,Q2,W,2.3 热力学第二定律(The Second L

3、aw of Thermodynamics),热力学第二定律的几种说法是在总结众多自发过程的特点之后提出来的。后果不可消除原理它是自发过程不可逆性的一种较为形象的描述,其内容是:任意挑选一自发过程,指明它所产生的后果不论用什么方法都不能令其消除,即不能使得发生变化的体系和环境在不留下任何痕迹的情况下恢复原状,2.5 注意事项(防止断章取义),热力学第二定律强调(指明)一个方向的不可能,均有前提条件,即不影响环境(或体系)的条件下不可能。,热在一定的条件下可以全部转化为功,如气体等温膨胀,但系统发生变化。(体积增大),低温物体在一定条件下可以可以将热量传给高温物体(冰箱),但环境发生变化。(见下一

4、节卡诺循环),十九世纪,汤姆荪(Thomsom)和贝塞罗特(Berthlot)就曾经企图用H的符号作为化学反应方向的判据。他们认为自发化学反应的方向总是与放热的方向一致,而吸热反应是不能自动进行的。虽然这能符合一部分反应,但后来人们发现有不少吸热反应也能自动进行,如众所周知的水煤气反应就是一例。这就宣告了此结论的失败。可见,要判断化学反应的方向,必须另外寻找新的判据。,化学变化的方向性,2.2 卡诺热机,1824 年,法国工程师N.L.S.Carnot(17961832)设计了一个循环,以理想气体为工作物质,从高温T2热源吸收Q2的热量,一部分通过理想热机用来对外做功W,另一部分Q1的热量放给

5、低温T1热源。这种循环称为卡诺循环,2,1,提高能量的使用效率,1796-1832,Carnot NLS 法国物理学家,卡诺循环,卡诺循环(Carnot cycle),(1)恒温可逆膨胀(2)绝热可逆膨胀(3)恒温可逆压缩(4)绝热可逆压缩,热机效率(efficiency of the engine),P33,例1。,任何热机从高温 T2热源吸热Q2,一部分转化为功W,另一部分Q1传给低温T1热源.将热机所作的功与所吸的热之比值称为热机效率,或称为热机转换系数,用 表示。恒小于1。,卡诺定理,卡诺定理:所有工作于同温热源和同温冷源之间的热机,其效率都不能超过可逆机,即可逆机的效率最大。,卡诺定

6、理的意义:解决了热机效率的极限值问题。,火力发电厂的能量利用,高煤耗、高污染(S、N氧化物、粉尘和热污染),火力发电厂的能量利用,火力发电厂的改造利用,热电厂的能量利用,从卡诺循环得到的结论,即卡诺循环中,热效应与温度商值的加和等于零。,2.3 熵,用一闭合曲线代表任意可逆循环。,可分成两项的加和,在曲线上任意取A,B两点,把循环分成AB和BA两个可逆过程。,根据任意可逆循环热温商的公式:,熵的引出,说明任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关,这个热温商具有状态函数的性质。,移项得:,任意可逆过程,熵的定义,克劳修斯根据可逆过程的热温商值决定于始终态而与可逆过程无关这一事实定

7、义了“熵”(entropy)这个函数,用符号“S”表示,单位为:,对微小变化,这几个熵变的计算式习惯上称为熵的定义式,即熵的变化值可用可逆过程的热温商值来衡量。,设始、终态A,B的熵分别为 和,则:,熵的物理意义,熵(体系的宏观性质)是体系混乱度(微观性质)的一种量度。熵是一个状态函数,是物质的特性常用单位:JK-1。,S气 S液 S固 S(复杂分子)S(简单分子)S(高温)S(低温)S(低压气体)S(高压气体),CaCO3(s),CaO(s)+CO2(g),NH4Cl(s),NH4+(aq)+Cl-(aq),混乱度增加,混乱度增加,熵值的大小规律:,试判断下列过程的S是正还是负。冰融化成水

8、炸药爆炸 甲烷燃烧 CH4(g)+2O2(g)=CO2(g)+2H2O(l)合成氨反应 N2(g)+3H2(g)=2NH3(g)从溶液中析出结晶,(+),(+),(-),(),(),热力学第三定律,熵的绝对值至今还无法求得,为此,Planck根据一系列实验现象及科学推测,得出了热力学第三定律:在热力学温度0K时,任何纯物质完善晶体的熵值等于零。,由热力学第三定律,可以求得在指定温度T下的熵值ST,称为规定熵。必须指出,规定熵是以T=0 K,S=0为比较标准而求得的,实际上是一个熵变值。,任何循环过程的热温商之和小于等于零:,可逆时等于零,不可逆时小于零。,循环过程有可逆不可逆循环之分,克劳修斯

9、不等式,设有一个循环,为不可逆过程,为可逆过程,整个循环为不可逆循环。,则有,当始、终态相同时,可逆过程的热温商值和大于不可逆过程的热温商之和。,克劳修斯不等式,这些都称为克劳修斯不等式,也可作为热力学第二定律的数学表达式。,熵增加原理,对于绝热体系,所以克劳修斯不等式为,等号表示绝热可逆过程,不等号表示绝热不可逆过程。熵增加原理可表述为:在绝热条件下,趋向于平衡的过程使体系的熵增加。或者说在绝热条件下,不可能发生熵减少的过程。,如果是一个隔离体系,环境与体系间既无热的交换,又无功的交换,则熵增加原理可表述为:一个隔离体系的熵永不减少。,克劳修斯不等式的意义,克劳修斯不等式引进的不等号,在热力

10、学上可以作为变化方向与限度的判据。,“”号为不可逆过程“=”号为可逆过程,“”号为自发过程“=”号为处于平衡状态,因为隔离体系中一旦发生一个不可逆过程,则一定是自发过程。,热力学第二定律的本质,热力学第二定律指出,凡是自发的过程都是不可逆的,而一切不可逆过程都可以归结为热转换为功的不可逆性。,混乱度最大原则:一切自发过程(不可逆过程)都是向混乱度增加的方向进行。,计算要点1.体系熵变必须沿可逆过程求其热温商;2.环境熵变必须沿实际过程求其热温商,且体系热与环境热大小相同,符号相反;3.判断过程的方向必须用总熵变,绝热时可用体系熵变;4.计算体系熵变的基本公式:,2.环境熵变的计算,1.简单可逆

11、过程熵变的计算,3.简单不可逆过程熵变的计算,常见可逆过程,1.气体可逆膨胀压缩过程,a.恒温可逆b.绝热可逆,2 可逆相变:,1.环境的熵变,1.环境熵变的计算,2.系统恒温过程的熵变(1)恒温可逆状态变化的熵变,2.系统恒温过程的熵变(2)真空膨胀,在两相平衡压力和温度下的相变,即是可逆相变。因为压力恒定,此时相变焓在量值上等于可逆热。,2 可逆相变:,100 101.325kPa H2O(l)H2O(g),例:,1.理想气体等温(T=300 K)膨胀过程中从热源吸热 600 J,所做的功仅是变到相同终态时最大功的 1/10,则体系的熵变S=_ JK-1。2.1mol氧理想气体在298K时

12、向真空膨胀,体积变为原来的5倍,这一膨胀过程的S=_,1、在101.325 kPa下,385 K的水变为同温下的水蒸气,对该变化过程,下列各式中哪个正确?()(A)S体+S环0(B)S体+S环 0(B)S环不确定(C)S体+S环 0(D)S环 0,标准摩尔熵(standart molar entropy),S=STS0=ST在指定温度T和100 kPa下,1mol纯物质的规定熵称为该物质的标准摩尔熵,简称标准熵,用符号Som表示。单位为JK-1mol-1。一些物质在298.15K的标准熵见p262。,注意:与标准生成焓fom 不同,稳定单质的标准熵Som不为零,因为它们不是绝对零度的完善晶体。

13、,化学过程的熵变,(1)在标准压力下,298.15 K时,各物质的标准摩尔熵值有表可查。根据化学反应计量方程,可以计算反应进度为1 mol时的熵变值。,设化学反应为aA+bB=dD+eE,r S om=Som(生成物)Som(反应物)=d Som(D)+e Som(E)a Som(A)+b Som(B),计算CO2(g)和H2O(l)合成葡萄糖反应在100kPa、298.15K进行反应时的S,6CO2(g)+6H2O(l),C6H12O6(s)+6O2(g),213.6 69.94 228.0 205.0,=(228.0+6 x 205.0)-(6x213.6+6x69.94)=-243.24

14、(J.K-1.mol-1),在绝热情况下,系统发生可逆过程时,其熵值不变;不可能发生熵值减小过程。此即熵增原理。隔离系统熵增原理可表示为:(不可逆,=可逆)(不可逆,=可逆)又可称为熵判据。,可逆、不可逆判断熵增原理,亥姆霍兹函数和吉布斯函数,1.亥姆霍兹函数在恒温恒容及非体积功为零的条件下dSsys+dSamb0(不可逆=可逆)dSsys+Qamb/Tamb0(不可逆=可逆)将Tamb=Tsys Qamb=-Qsys=-dUsys代入上式 dS-dU/T 0(自发=平衡)d(U TS)0(自发=平衡),亥姆霍兹函数AT,V0(自发=平衡)(恒温,恒容,W0)称为亥姆霍兹函数判据 在恒温恒容可

15、逆条件下 dA=dU-TdS将dU=Qr pdV+Wr=Qr+Wr 及Qr=TdS代入上式得 dAT,V=Wr,恒温恒容时系统亥氏函数的减小值等于可逆过程中系统所作的非体积功。,可逆、不可逆判断熵增原理,2.吉布斯函数在恒温恒压及非体积功为零的条件下,将Tamb=Tsys Qamb=-Qsys=-dHsys 代入下式dSsys+Qamb/Tamb 0(不可逆=可逆)于是得dS-dH/T 0(自发=平衡)d(H-TS)0(自发=平衡),吉布斯函数,GT,p 0(自发=平衡)(恒温,恒压,W0)此式称之为吉布斯函数判据。dG=d(U+pV-TS)=dU+pdV-TdS 将dU=Qr+dWr=Qr

16、pdV+Wr及Qr=TdS代入上式得 dGT,p=Wr 或GT,p=Wr,恒温恒压时系统吉氏函数的减小值等于可逆过程中系统所作的非体积功。,G与化学反应的方向及限度,=max,G均为状态函数,绝对值无法求得,G可以求得,所得数值表明体系在特定条件下作功的能力。,G=HT S,化学反应DrG的计算,根据标准生成吉布斯能计算,某温度下由处于标准态的各种元素的最稳定单质生成标准态下1摩尔某化合物时的吉布斯自由能变化。,规定:最稳定单质的标准生成吉布斯自由能等于零。,设化学反应为aA+bB=dD+eE,r G om=Gom(生成物)Gom(反应物)=d Gom(D)+e Gom(E)a Gom(A)+

17、b Gom(B),例:已知在植物光合系统工作下,光照对绿色植物通过下列反应进行光合作用合成葡萄糖:,6CO2(g)+6H2O(g),C6H12O6(s)+6O2(g),由反应的 估计这个反应在没有光和光合系统下能否发生?,解:,该反应在没有光和光合系统下不能发生。,化学过程的焓变、熵变、吉布斯,设化学反应为aA+bB=dD+eE,r H m=H m(生成物)H m(反应物)=d H m(D)+e H m(E)a H m(A)+b H m(B)r S m=S m(生成物)S m(反应物)=d S m(D)+e S m(E)a S m(A)+b S m(B),r G m=G m(生成物)G m(反

18、应物)=d G m(D)+e G m(E)a G m(A)+b G m(B),G1 H1 S1始态,G2 H2 S2终态,G=G2 G1=(H2 T S2)(H1T S1)=(H2H1)T(S2S1),根据G=HT S方程计算,例:已知反应 CaCO3(s)=CaO(s)+CO2(g)的,求反应在298K及1200K时的 及反应进行的最低温度。,根据G=HT S方程:,解:,CaCO3(s)=CaO(s)+CO2(g),化学反应的标准焓和熵的计算以及反应条件判断,例 试计算下列反应在298K时的,,N2(g)+3H2(g)=2NH3(g)N2(g)+O2(g)=2NO(g),0 0-46.11

19、 0 0 90.25191.5 130.57 192.3 191.5 205.03 210.65,并说明能否由计算结果判断反应方向。,解:,N2(g)+3H2(g)=2NH3(g),N2(g)+O2(g)=2NO(g),(1)焓的定义式,2.8 热力学基本方程,(2)Gibbs函数定义式,函数间关系的图示式,1.热力学基本方程,dU=TdS-pdV,dH=TdS+Vdp,dG=-SdT+Vdp,应用条件是:,封闭的热力学平衡系统的可逆过程。不仅适用于无相变化、无化学变化的平衡系统(纯组分或多组分、单相或多相)发生的单纯pVT变化的可逆过程,也适用于相平衡和化学平衡系统同时发生pVT变化及相变化

20、和化学变化的可逆过程。,可利用能够直接测定的物质特性,即 pVT 关系和热容,来获得那些不能直接测定的U、H、S、G的变化。反之,如知道U、H、G的变化规律,即那些广义的状态方程,可得到所有的其它热力学信息。,基本方程的意义在于:,2.由热力学基本方程计算纯物质 pVT变化过程的G,根据具体过程,代入就可求得G值。因为G是状态函数,只要始、终态定了,总是可以设计可逆过程来计算G值。,等温下,体系从改变到,(适用于恒温条件下任何物质),对理想气体:,对于凝聚物系因物质的压缩率很小,有:,当压力改变不大时:,2.9 偏摩尔量,无论什么体系,体系质量总是等于构成该体系各物质的质量的总和。其它容量性质

21、(如体积、内能等)在纯物质体系具有与质量相同的这种性质;等温等压下将多种纯物质混合形成多组分体系,往往伴随有容量性质的变化。,1.问题的提出,以体积为例,对纯组分系统 来说偏摩尔量就是它的摩尔量。,偏摩尔量是在恒定T,p 下系统其它物质的量不变时,改变1mol 物质B引起的系统广度性质X的变化。,偏摩尔量的性质,2.偏摩尔量的定义与物理意义,对容量性质X,根据状态函数的基本假定,偏摩尔量ZB的定义为:,ZB称为物质B的某种容量性质Z的偏摩尔量(partial molar quantity)。,以体积为例,假若B,C形成混合物,一般式有,使用偏摩尔量时应注意:,1.偏摩尔量的含义是:在等温、等压

22、、保持B物质以外的所有组分的物质的量不变的条件下,改变 所引起广度性质Z的变化值,或在等温、等压条件下,在大量的定组成体系中加入单位物质的量的B物质所引起广度性质Z的变化值。,2.只有广度性质(如:体积、焓、熵、吉布斯函数)才有偏摩尔量。,3.纯物质的偏摩尔量就是它的摩尔量。,4.任何偏摩尔量都是T,p和组成的函数。,定义:,保持温度、压力和除B以外的其它组分不变,体系的Gibbs函数随 n 的变化率称为化学势,所以化学势就是偏摩尔Gibbs函数。,化学势,化学势判据,在恒温恒压下如任一物质在两相中具有相同的分子形式,但化学势不等,则相变化自发进行的方向必然是朝着化学势减少的方向进行;如化学势

23、相等,则两相处于相平衡状态。,等于零时:平衡小于零时:自发,气体组分的化学势,化学势是T,p的函数。温度为T,压力为标准压力时理想气体的状态就是气体的标准态。该状态下的化学势称为标准化学势,以 表示。,总是T、p的函数。是标准压力p、温度为T时理想气体的化学势。,纯理想气体的化学势,G,均为状态函数,绝对值无法求得,G可以求得,所得数值表明体系在特定条件下作功的能力。,化学势(,J),熵变的计算,物理过程,化学过程,1)环境熵变的计算2)可逆相变(正常熔化沸腾)3)理想气体恒温可逆膨胀 理想气体真空等温膨胀 理想气体混合4)其他(变温过程以及不可逆相变),3 理想气体恒温可逆过程因U=0,Q=

24、-W,理想气体真空等温膨胀,可以达到和恒温可逆膨胀一样的结果,如何计算熵值,Q=-Wr=nRTln(V2/V1)=nRTln(p1/p2)由S=Qr/T得:S=nRln(V2/V1)S=-nRln(p2/p1),25oC时,0.5mol氧气从1dm3恒温可逆膨胀到10dm3,求体系熵变,并用熵判断此过程的性质。假定气体是理想气体。,S体系=Q/T=nRln(V2/V1)=0.5 x 8.314 x ln(10/1)=9.572(J.K-1),S环境=-Q/T=-nRln(V2/V1)=-9.572(J.K-1),S总=S环境+S体系=0,25oC时,0.5mol氧气对抗100 Kpa外压恒温从

25、1dm3膨胀到10dm3,求体系熵变,并用熵判断此过程的性质。假定气体是理想气体。,S体系=Qr/T=nRln(V2/V1)=0.5x8.314xln(10/1)=9.572(J.K-1),S环境=-Q/T=w/T=-P外(V2-V1)/T=-3.019(J.K-1),S总=S环境+S体系=6.553(J.K-1),25oC时,0.5mol氧气恒温从1dm3真空膨胀到10dm3,求体系熵变,并用熵判断此过程的性质。假定气体是理想气体。,S体系=Qr/T=nRln(V2/V1)=0.5x8.314xln(10/1)=9.572(J.K-1),S环境=0/T=0,S总=S环境+S体系=9.572(

26、J.K-1),298K时,氯化铵分解反应:NH4Cl(s)=NH3(g)+HCl(g),1.试判断该反应在标准状态下是否自发;2.在标况下氯化铵分解反应的最低温度。,1.在T、P条件下化学反应2A(g)+B(g)3C(g)自发地由反应物变为产物,则反应体系中化学势之间应满足:()(A)2A+B3C(B)2A+B3C(C)2A+B=3C(D)A+BC,2.1mol水银蒸气在正常沸点630K时压缩成液体,已知其蒸发热为54566Jmol-1,设水银蒸气为理想气体,则此过程的U、H 和S,G为-()U=H=-54566J,S=0,G=0(B)U=-49328J,H=-54566J,S=-86.6J.

27、K-1,G=0(C)由于定温,故U=0,H=0,S=0,G=0(D)U=-49328J,H=-54566J,S=-78.3,G=0,3.对于下列的四种表述:(1)因为H=Qp,所以只有等压过程才有H(2)因为H=Qp,所以Qp也具有状态函数的性质(3)公式H=Qp只适用于封闭体系(4)对于封闭体系经历一个不作其它功的等压过程,其热量只决定于体系的始态和终态上述诸结论中正确的是:()(A)(1)(4)(B)(3)(4)(C)(2)(3)(D)(1)(2),4.关于偏摩尔量,下面的叙述中不正确的是-()(A)偏摩尔量的数值可以是正数、负数和零(B)溶液中每一种性质都有偏摩尔量,而且都不等于其摩尔量

28、(C)偏摩尔吉布斯函数称为化学势,1.理想气体等温(T=300 K)膨胀过程中从热源吸热 9000J,所做的功是变到相同终态时最大功,则体系的熵变S=_ JK-1。2.1mol氧理想气体在298K时向真空膨胀,体积变为原来的5倍,这一膨胀过程的系统S=_,环境S=_。3.熵是体系_的一种量度。熵值小的状态相对于_的状态。在隔离体系中,自_的状态向_的状态变化,是自发变化的方向,这就是热力学第二定律的本质。4.在_、_、_的条件下,自发变化总是朝着吉布斯自由能_的方向进行的,直到体系达到平衡。,5.凡是与物质的数量成正比的称为_,如V,U,H;凡是性质与物质数量无关的称为_,如T,P。只有_才有偏摩尔量,_不具有偏摩尔量(填广度量,强度量)。,谢谢批评指正!,理想气体混合:,0.5mol氧气,0.5mol氮气,0.5mol氧气0.5mol氮气,3.2自发变化不可逆症结,T2高温热源,T1低温热源,M,Q2,Q1,W,纯物质恒压变温过程:恒压下温度对于相变化、化学变化,熵的定义,克劳修斯根据可逆过程的热温商值决定于始终态而与可逆过程无关这一事实定义了“熵”(entropy)这个函数,用符号“S”表示,单位为:,对微小变化,这几个熵变的计算式习惯上称为熵的定义式,即熵的变化值可用可逆过程的热温商值来衡量。,设始、终态A,B的熵分别为 和,则:,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号