新青岛九年级数学上册全部学案.docx

上传人:小飞机 文档编号:3569527 上传时间:2023-03-13 格式:DOCX 页数:102 大小:79.09KB
返回 下载 相关 举报
新青岛九年级数学上册全部学案.docx_第1页
第1页 / 共102页
新青岛九年级数学上册全部学案.docx_第2页
第2页 / 共102页
新青岛九年级数学上册全部学案.docx_第3页
第3页 / 共102页
新青岛九年级数学上册全部学案.docx_第4页
第4页 / 共102页
新青岛九年级数学上册全部学案.docx_第5页
第5页 / 共102页
亲,该文档总共102页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《新青岛九年级数学上册全部学案.docx》由会员分享,可在线阅读,更多相关《新青岛九年级数学上册全部学案.docx(102页珍藏版)》请在三一办公上搜索。

1、新青岛九年级数学上册全部学案青岛版数学九年级上册学案 1.1 平行四边形及其性质 审核人:1 学习目标:1、理解并掌握平行四边形的定义 2、掌握平行四边形的性质定理1及性质定理2 3、提高综合运用知识的能力 学习重点:平行四边形的定义,对角、对边相等的性质,以及性质的应用 学习难点:运用平行四边形的性质进行有关的论证和计算 预习指导: 1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如_等,都是平行四边形。 2、_是平行四边形。 3、平行四边形的性质是:_. 学习过程: 一、 学习新知 1、平行四边形的定义 定义:_叫做平行四边形。 几何语言表述: ABCD AD

2、BC 四边形ABCD是平行四边形 定义的双重性: 具备_的四边形,才是平行四边形, 反过来,平行四边形就一定具有性质。 平行四边形的表示:平行四边形ABCD记作_,读作_. 2、平行四边形的性质 平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢? 已知:如图ABCD, 求证:ABCD,CBAD 分析:要证ABCD,CBAD我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线_,它将平行四边形分成_和_,我们只要证明这两个三角形全等即可得到结论 证明: 总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。 在上题中你能证明B

3、=D, BAD=BCD吗?利用我们学过的方法试一试。 证明: 通过上面的证明,我们得到了 平行四边形的性质定理1是:_. 平行四边形的性质定理2是:_. 二、应用举例: 例1、如图,在平行四边形ABCD中,AE=CF, 求证:AF=CE 0例2:在平行四边形ABCD中,A=50,求B、C、D的度数。 0在平行四边形ABCD中,A=B+40,求A的邻角的度数。 A三、随堂练习 E1、如图,在平行四边形ABCD中,AE=CF,求证AF=CE B 图2、平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。 3、在平行四边形ABCD中,若A:B=2:3,求C、D的度数。 四、课堂小结

4、: 五、当堂检测 1填空: DFC在ABCD中,A=50,则B= 度,C= 度,D= 度 如果ABCD中,AB=240,则A= 度,B= 度,C= 度,D= 度 如果ABCD的周长为28cm,且AB:BC=25,那么AB= cm,BC= cm,CD= cm,CD= cm 2如图,在ABCD中,AC为对角线,BEAC,DFAC,E、F为垂足,求证:BEDF 3、在下列图形的性质中,平行四边形不一定具有的是 对角相等 对角互补 邻角互补 内角和是360 第3题图 第4题图 4、如图:在ABCD中,如果EFAD,GHCD,EF与GH相交与点O,那么图中的平行四边形一共有4个 5个 8个 9个 5、如

5、图,ADBC,AECD,BD平分ABC,求证:AB=CE 1.1 平行四边形及其性质 审核人:1 学习目标:1、掌握平行四边形对角线互相平分的性质 2、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题培养学生的推理论证能力和逻辑思维能力 学习重点:掌握平行四边形对角线互相平分的性质 学习难点:能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题培养学生的推理论证能力和逻辑思维能力 学习过程: 二、 学习新知 如图,EFGH中,连接对角线EG、HF,设它们分别交于点O分别度量OH、OF的长度,你发现它们存在的数量关系是_. 猜想线段OG、OE之间的数量关系

6、是_. 证明你的猜想: 由此我们可以得到平行四边形的性质定理3_ 二、应用举例: 例题 已知: ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F 求证:OEOF 分析:要证OEOF,根据图形分析,只要证明OE、OF所在的两个三角形_. 证明: 若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交,例1的结论是否成立,说明你的理由 三、随堂练习 1、在平行四边形中,周长等于48, 已知一边长12,求各边的长 已知AB=2BC,求各边的长 已知对角线AC、BD交于点O,AOD与AOB的周长的差是1

7、0,求各边的长 2、如图,ABCD中,AEBD,EAD=60,AE=2cm, AC+BD=14cm,则OBC的周长是_ _cm 3、ABCD一内角的平分线与边相交并把这条边分成5cm,7cm的两条线段,则ABCD的周长是_ _cm 四、课后小结 :平行四边形的对角线具备的性质是_. 五、当堂检测 1判断对错 在ABCD中,AC交BD于O,则AO=OB=OC=OD 平行四边形两条对角线的交点到一组对边的距离相等 平行四边形的两组对边分别平行且相等 平行四边形是轴对称图形 2在 ABCD中,AC6、BD4,则AB的范围是_ _ 3在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为,和1

8、6,则这个四边形的周长是 4公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB15cm,AD12cm,ACBC,求小路BC,CD,OC的长,并算出绿地的面积 1.3 特殊的平行四边形 审核人:1 学习目标:1、理解菱形的定义。 2、探究归纳菱形的性质。 3、掌握菱形的判定方法。 4、培养综合运用知识分析解决问题的能力。 学习重点:理解菱形的定义。探究归纳菱形的性质。掌握菱形的判定方法。 学习难点:培养综合运用知识分析解决问题的能力。 学习过程: 一、 学习新知 自学教材17页19页内容完成以下题目: 1、 叫做菱形。菱形是_的平行四边形。 2、从菱形的意义可以探究菱形具

9、有的性质: 菱形具有平行四边形具有的一切性质。 菱形与平行四边形比较又有其特殊的性质: 特殊在“边”上的性质是_. 特殊在“对角线”上的性质是:_. 3、我们可以从“对角线”和“角”两方面得到菱形的判定定理: 菱形的判定定理:_. 菱形的判定定理:_. 二、应用举例: 例题:如图,已知AD是RtABC斜边BC上的高,ABC的平分线交AD于M交AC于E,DAC的平分线交CD于N.证明:四边形AMNE是菱形. 分析:(1)由已知AD是RtABC斜边BC上的高 很容易得到ABC=_, 又ABC的平分线交AD于M交AC于E,DAC的平分线交CD于N,可得_= _=_=_. (2)要证四边形AMNE是菱

10、形可证其四条边相等,或证对角线互相垂直平分。根据分析完成证明: 三、随堂练习 1、菱形周长为40,一条对角线长为16,则另一条对角线长为 ,这个菱形的面积为 。 2、已知菱形的一边长为,4厘米,则它的周长为 3、在四边形ABCD中,若已知ABCD,则再增加条件 即可使四边形ABCD成为平行四边形。若再补充条件_,则四边形ABCD为菱形 4、矩形ABCD的对角线相交于O,DEAC,CESD,求证四边形OCED是菱形。 四、课堂小结 五、当堂检测 1、棱形的周长为8.4cm,相邻两角之比为5:1,那么菱形一组对边之间的距离为 A、1.05cm B、0.525cm C、4.2cm D、2.1cm 2

11、、菱形ABCD中A=120,周长为14.4,则较短对角线的长度为 。 3、菱形的面积为50平方厘米,一个角为30,则它的周长为 。 4、在菱形ABCD中,BAD=80,AB的垂直平分线交AC于F,交AB于E, 则,CDF= A、80 B、70 C、65 D、50 5、小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件 ,使得四边形ABCD是菱形。小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是 A、小明、小亮都正确 B、小明正确,小亮错误 C、小明错误,小亮正确 D、小明、小亮都错误 6、下列命题中是真命题的是 对角线互相平分的四边形是菱形 对角线互

12、相平分且相等的四边形是菱形 对角线互相垂直的四边形是菱形 D对角线互相垂直平分的四边形是菱形 7、在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF,过点C做CGEA交FA于H ,交AD于G,若BAE=25,BCD=130,求AHC的度数。 8、AD是ABC的角平分线,DEAC交AB于E,DFAB交AC于F,求证四边形AEDF是菱形。 1.3 特殊的平行四边形 审核人:1 学习目标:1掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算 2理解正方形与平行四边形、矩形、菱形的联系和区别。 学习重点:掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算 学习难点:理解正

13、方形与平行四边形、矩形、菱形的联系和区别。 学习过程: 一、 学习新知 自学教材19页20页内容完成以下题目: 1、 叫做正方形。正方形是_的矩形,也是_的菱形。 2、从正方形的意义可以探究正方形具有的性质: 正方形具有平行四边形具有的一切性质。 正方形具有矩形具有的一切性质。 正方形具有菱形具有的一切性质。 正方形的对角线具有的性质是_. 3、正方形的判定方法是: _的矩形是正方形。 _的菱形是正方形。 二、应用举例: 例题1:已知:如图,正方形ABCD中,E为BC上一点,AF平分DAE交CD于F,求证:AE=BE+DF 例题2:已知:如图,ABC中,C=90,CD平分ACB,DEBC于E,

14、DFAC于F求证:四边形CFDE是正方形 三、随堂练习 1已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF 求证:EAAF 2已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DGAE于G,DG交OA于F求证:OE=OF 四、课后小结:正方形的概念、性质和判定,正方形与平行四边形、矩形、菱形的联系和区别。 五、当堂检测 1、正方形的四条边_ _,四个角_ _,两条对角线_ _ 2、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是 AC=BD,ABCD,AB=CD ADBC,A=C AO=BO=CO=DO,ACBD AO=C

15、O,BO=DO,AB=BC 3、如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为 A.平行四边形 B、矩形 C、菱形 D. 正方形 H DA4、下列说法是否正确,并说明理由 GEB对角线相等的菱形是正方形; CF对角线互相垂直的矩形是正方形; 对角线垂直且相等的四边形是正方形; 四条边都相等的四边形是正方形; 四个角相等的四边形是正方形 5、如图,在正方形ABCD中,E为DC边上的点,连接BE,将BCE绕点C顺时针方向旋转90得到DCF,连接EF若BEC=60, 则EFD的度数为 10 15 20 25 6、已知:如图,四边形ABCD为

16、正方形,E、F分别为CD、CB延长线上的点,且DEBF求证:AFEAEF F A B C D E 1.4 图形的中心对称 审核人:1 教学目标 1、了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题 2、复习运用旋转知识作图,旋转角度变化,设计出不同的美丽图案来引入旋转180的特殊旋转中心对称的概念,并运用它解决一些实际问题 重难点、关键 1重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题 2难点与关键:从一般旋转中导入中心对称 一、复习引入 请同学们独立完成下题 如图,ABC绕点O旋转,使点A旋转到点D处, 画出旋转后的三角形,并写出简要作法 二、探索新知

17、 问题:作出如图的两个图形绕点O旋转180的图案,并回答下列的问题: 1以O为旋转中心,旋转180后两个图形是否重合? 2各对称点绕O旋转180后,这三点是否在一条直线上? 像这样,把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心 这两个图形中的对应点叫做关于中心的对称点 1如图,四边形ABCD绕D点旋转180,请作出旋转后的图案,写出作法并回答 这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由 如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点 2如图,已知AD是ABC的中线,画出以点

18、D为对称中心,与ABD成中心对称的三角形 三、巩固练习 教材练习2 四、应用拓展 3如图,在ABC中,C=70,BC=4,AC=4,现将ABC沿CB方向平移到ABC的位置 若平移的距离为3,求ABC与ABC重叠部分的面积 若平移的距离为x,求ABC与ABC重叠部分的面积y,写出y与x的关系式 五、归纳小结 六、当堂检测 选择题 1在英文字母VWXYZ中,是中心对称的英文字母的个数有个 A1 B2 C3 D4 2下面的图案中,是中心对称图形的个数有个 A1 B2 C3 D4 3如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D、C分别落在D、C的位置上,若EFG=55,则

19、1= A55 B125 C70 D110 填空题 1关于某一点成中心对称的两个图形,对称点连线必通过_ 2把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形是_图形 3用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_ 长方形;菱形;正方形;一般的平行四边形;等腰三角形;梯形 三、综合提高题 1仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 对称 轴对称 旋转 中心 形式 只有一条对称轴 有两条对称轴 对称 对称 2如图,在正方形ABC

20、D中,作出关于P点的中心对称图形,并写出作法 3如图,是由两个半圆组成的图形, 已知点B是AC的中点,画出此图形 关于点B成中心对称的图形 1.4 图形的中心对称(2) 审核人:1 教学目标 1.理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用 2.复习中心对称的基本概念,提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质 重难点、关键 1重点:中心对称的两条基本性质及其运用 2难点与关键:让学生合作讨论,得出中心对称的两条基本性质 一、复习引入 1什么叫中心对称?什么叫对称中心? 2什么叫

21、关于中心的对称点? 3请同学随便画一三角形,以三角形一顶点为对称中心,画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论 探索新知 例1如图,已知ABC和点O,画出DEF,使DEF和ABC关于点O成中心对称 例2如图,已知四边形ABCD和点O,画四边形ABCD,使四边形ABCD和四边形ABCD关于点O成中心对称 二、巩固练习 1如图等边ABC内有一点O,试说明:OA+OBOC 四、归纳小结 中心对称的两条基本性质: 1关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分; 2关于中心对称的两个图形是全等图形及其它们的应用 五、 当堂检测 一、选择题 1下面图

22、形中既是轴对称图形又是中心对称图形的是 A直角 B等边三角形 C直角梯形 D两条相交直线 2下列命题中真命题是 A两个等腰三角形一定全等 B正多边形的每一个内角的度数随边数增多而减少 C菱形既是中心对称图形,又是轴对称图形 D两直线平行,同旁内角相等 3将矩形ABCD沿AE折叠,得到如图的所示的图形,已知CED=60,则AED的大小是A60 B50 C75 D55 二、填空题 1关于中心对称的两个图形,对称点所连线段都经过_,而且被对称中心所_ 2关于中心对称的两个图形是_图形 3线段既是轴对称图形又是中心对称图形,它的对称轴是_,它的对称中心是_ 三、综合提高题 1分别画出与已知四边形ABC

23、D成中心对称的四边形,使它们满足以下条件:以顶点A为对称中心,以BC边的中点K为对称中心 2如图,已知一个圆和点O,画一个圆,使它与已知圆关于点O成中心对称 3如图,A、B、C是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校M,现计划修建居民小区D,其要求:到学校的距离与其它小区到学校的距离相等;控制人口密度,有利于生态环境建设,试写居民小区D的位置 1.5 梯形 主备人:1 审核人:张辉 教学目标: 1、掌握梯形的相关概念和等腰梯形的特征,培养学生初步应用等腰梯形特征解决问题的能力. 2、使学生经历探究等腰梯形特征的过程,体会探索问题的方法,渗透转化的思想. 3、通过合

24、作交流增强团队意识,体验成功的喜悦. 教学重点、难点: 重点: 探索等腰梯形特征. 难点: 运用轴对称性和转化的思想研究等腰梯形的特征. 教学过程: 我欣赏 我发现 引例:欣赏一段录像,并观察录像中的物体可以抽象成哪些几何图形.从而引出课题梯形 矩形欣赏生活抽象 几何图形引出课题中的物品 梯形认识梯形的各元素,介绍常见的等腰梯形和直角梯形 等腰梯形 回顾梯形 认识梯形相关元素直角梯形 我实践 我感悟 活动一: 在你的黄色梯形纸板上画出一至两条线段,将梯形分割成已学过的几何图形. 分析、讲解分割的过程及结果 我探究 我说理 活动二: 1.在半透明的方格纸上画一个等腰梯形ABCD. 2.借助所画等

25、腰梯形探究其特征,试着说明理由. 半透明的方格纸是由一张方格纸在其上面放一张半透明纸形成的,这样学生可以充分利用方格纸的格在半透明纸上画出等腰梯形,并利用半透明纸的特点将所画的等腰梯形进行折叠等活动研究发现其特征 验证所 得到的结论,从而归纳得出等腰梯形的特征 延长等腰梯形的两腰,看看有什么发现,并写出求解的过程 E ADADBCBC我应用 我能行 1.如图所示,在梯形ABCD中,如果ADBC.AB=CD,B=60,ACAB, 那么ACD= _,D=_. AD2、如图,在梯形ABCD中,ABDC,M、N分别是两条对角线BD、AC的中点, 说明:MNDC且MN1. BDC当堂检测 HG一、选择题

26、 1.有两个角相等的梯形是( ) C A.等腰梯形 B.直角梯形; C.一般梯形 D.直角梯形或等腰B梯形 2.下列命题正确的是( ) A.凡是梯形对角线都相等; B.一组对边平行,另一组对边相等的四边形是梯形 C.同一底上的两个角相等的梯形是等腰梯形; D.只有两个角相等的梯形是等腰梯形 3.在四边形ABCD中,ADDC,AC=BD,则四边形ABCD中( ) A.平行四边形 B.等腰梯形; C.矩形 D.等腰梯形或矩形 4.下列命题,错误命题的个数是( ) 若一个梯形是轴对称图形,则此梯形一定是等腰梯形; 等腰梯形的两腰的延长线与经过两底中点的直线必交于一点; 一组对边相等而另一组对边不相等

27、的四边形是梯形; 有两个内角是直角的四边形是直角梯形. A.1个 B.2个 C.3个 D.4个 5.已知梯形的中位线长为24厘米,上、下底的比为1:3,则梯形的上、 下底之差是( ) A.24厘米 B.12厘米; C.36厘米 D.48厘米 二、填空题 1.如图所示,在梯形ABCD中,BCAD,DEAB,DE=DC,A=100, 则B=_,C=_,ADC=_,EDC=_. 2.等腰梯形的上、下底长分别为6cm,8cm, 且有一个角是60 , 则它的腰长为_. AD 3.如果等腰梯形的高等于腰长的一半,则它的四个角分别等于_. 4.已知梯形的两个对角分别是78和120,则另两个角分别是 。 三、

28、解答题 BCE1、如图,梯形ABCD中,ADBC,对角线ACBD,且ACBD,且ACDA5cm,BC12cm,求该梯形的中位线长. 2、梯形ABCD中,ADBC,点E是AB中点,连结EC、ED、CEDE,CD、AD与BC 三条线段之间有什么样的数量关系?请说明理由。 BC AD E B C3、已知:如图,等腰梯形ABCD中,AB=CD,AD/BC,点E、F、G分别在边AB、BC、CD上,AE=GF=GC。 求证:四边形AEFG是平行四边行。 当 FGC=2EFB 时,求证:四边形AEFG是矩形 DA EG BC F 1.6 中位线定理 审核人:1 学习目标 1、能识别三角形的中位线; 能证明三

29、角形中位线定理; 2、能用三角形中位线定理解决其它相关问题; 3、在自主探索与合作交流中, 经过猜想、验证过程,进一步发展推理论证能力. 学习难点 三角形中位线定理的证明及应用 教学过程 一、回顾与展望 1 如图,点O为ABCD对角线的交点, 过O的直线EF与边AD、BC分别相交于E、F, AEOBFCD图中全等三角形最多有_对. 2.已知:如图,E、F是ABCD的对角线AC上的点,且AE=CF. (1) BE与DF有什么关系? (2) 证明你的结论. E A 3. 已知:四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件: ABCD;OA=OC;AB=CD;BAD=DCB;ADBC

30、. BC从以上5个条件中任意选取2个条件,能推出四边形ABCD是平行四边形的有:如与 . F对由以上5个条件中任意选取2个条件,不能推出四边形ABCD是平行四边形的,请选取一种情形举出反例说明. 二、探究与成果 (一)三角形中位线的概念 1. 如图,(1)在ABC中,请你画出AB边上的中线CD; (2)对于ABC来说, 中线CD是由怎样的两点连接而成的? 答:_ (3)若E为ABC周边 (折线BA-AC-CB) 上的一点,连接DE,当E运动到AC边中点时,线段DE称为ABC的中位线 B(4) 三角形中位线与中线有什么区别? 答:_; (5) 当E在ABC周边上运动时,还有哪些位置使线段DE成为

31、三角形ABC的中位线? 答:_. 2.识图 (1) 如图, ABC中,D、E、F三等分AB, G、H、K三等分AC , 则ABC 的中位线是_; ADG是_的中位线. DG(2)读句画图并填空 E的中点 ABC的中线BD、CE相交于点O,F、G分别是OB、OCH则FG是_的中位线; KFDE是_的中位线. B(二)三角形中位线定理 1.已知;如图, ABC中,D、E分别是AB、AC的中点,则DE是ABC的中位线 BC称为第三边 (1)猜想DE与BC在位置和数量上各有什么关系? (2)证明你的猜想. DCCDEBC(3)用语言叙述三角形中位线定理: 三角形的中位线_第三边,且等于第三边的_. 2

32、.有一位同学用下列方法证明了三角形中位线定理,(大致思路是构造平行四边形BCGD),请你完成证明. 证明:延长DE至G,使EG=DE,连接CG D3.例: 如图,顺次连接四边形ABCD各边中点E、F、G、H,得四边形EFGH, 求证: 四边形EFGH是平行四边形. B 证明:连接BD, E、H分别是AB、AD的中点, EH是ABD的中位线, EH_BD, EH=_BD A同理: FG_BD, FG=_BD EH_FG, EH=_FG 四边形EFGH是平行四边形. E (三)随堂练习 BF1. RtABC中,直角边AC等于6cm, BC等于8cm, D、E分别是AC、BC的中点, 则DE=_ c

33、m. 2.如图,D、E、F分别是ABC各边的中点. (1) 若DF=5cm,你能求出哪些线段的长度? AEGCHDGCCDE (2)AD与EF有什么关系?你能证明吗. (四)课堂小结 当堂检测 E1. 在等腰直角三角形ABC中,斜边AC为2cm,D、F分别为AC和BC的中点,求 DF的长度. 2四边形ABCD中,E、F、G、H分别是AD、AC BC、BD的中点, 则EF是否某个三角形的中位线? GH是否某个三角形的中位线? EG是否某个三角形的中位线? HF是否某个三角形的中位线? EF 和GH有什么关系?请加以证明. 3 图, ABC的边长分别为a、b、c, 它的三条 中位线组成ABC,其周

34、长为为l1, 面积为 , ABC的三条中位线又组成ABC,其周长 BFDCEDHFBGC1B2为为l, 面积为 ; 用a、b、c表示ABC周长l_ ABC与ABC的面积之比为_ 用a、b、c表示AnBnCn周长ln_ 4小明有一个解不开的迷:他任意画了三个ABC,发现只要向图中的角平分线BG、CF作垂线AG、AF,连接两垂足F、G,则FG总是与BC平行,但他不会证明,你能解开这个迷吗? F1.6 中位线定理 B学习目标 1、学生能利用三角形中位线定理判断中点四边形的形状; 2、感受中点四边形的形状取决于原四边形的两条对角线的位置与长短; 3、通过图形变换使学生掌握简单添加辅助线的方法。 学习难

35、点 中点四边形的形状判定 教学过程 一、新知识讲解 中点四边形:顺次连接一个四边形四边中点所得四边形称为这个四边形的中点四边形 二、观察与猜想 依次连接任意四边形各边中点所成的四边形是什么形? 请同学们画一画观察并猜想 三、命题的给出与证明: 在同学探究的基础上给出结论:中点四边形至少是平行四边形 已知:如图,点E、F、G、H分别是四边形ABCD各边中点。 D H 求证:四边形EFGH为平行四边形。 A G E C B F 四、分析与探究: 1、如果把上题中的“任意四边形”改为“平行四边形”,它的中点四边形是什么形状呢? 把“任意四边形”改为“矩形”,它的中点四边形仍是平行四边形吗?有没有更特

36、殊? 再把它改为“菱形”、“正方形”呢? 改成“一般梯形、直角梯形、等腰梯形”呢? 结合手中准备的图片,小组探究以下几个问题答案: 任意四边形的中点四边形都是_;平行四边形的中点四边形是_; GC矩形的中点四边形是_; 菱形的中点四边形是_; 正方形的中点四边形是_; 梯形的中点四边形是_; 直角梯形的中点四边形是_; 等腰梯形的中点四边形是_。 2、结合刚才的证明过程,小组讨论并思考: 、中点四边形的形状与原四边形的什么有密切关系? 、要使中点四边形是菱形,原四边形一定要是矩形吗? 、要使中点四边形是矩形,原四边形一定要是菱形吗? 结论: 中点四边形的形状与原四边形的 有密切关系; 只要原四

37、边形的两条对角线_ _,就能使中点四边形是菱形; 只要原四边形的两条对角线 ,就能使中点四边形是矩形; 要使中点四边形是正方形,原四边形要符合的条件是 。 五、例题分析 如图:点E、F、G、H分别是线段AB、BC、CD、AD的中点,则四边形EFGH是什么图形?并说明理由。 D H A E G C B 当堂检测 F 1、 顺次连接等腰梯形的各边中点所成的四边形是_。 2、如图,任意四边形ABCD各边中点分别是E、F、G、H,若对角线AC、BD的长都为20cm,则四边形EFGH的周长是。 A80cm B40cm C20cm D10cm 3、已知,如图,四边形ABCD中,E、F、G、H分别是AB、B

38、C、CD、DA的中点, 试问,四边形EFGH是什么四边形?为什么? DH A BEFCG4、O是ABC所在平面内一动点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接,如果DEFG能构成四边形: 如图,当O点在ABC内部时,证明四边形DEFG是平行四边形。 当O点移动到ABC外部时,的结论是否还成立?画出图形并说明理由。 若四边形DEFG为矩形,O点所在位置应满足什么条件?试说明理由。 2.1 图形的平移 审核人:1 学习目标 1、通过具体实例认识平移,知道平移不改变图形的形状、大小。 2、认识和欣赏平移在现实生活中的应用。 3、经历观察、分析、操作、欣赏以及抽象、概括等过程,经历与他人合作交流的过程,进一步发展空间观念。 4、通过平移体会运动变化思想、化归思想。 学习重点 理解平移的概念 学习难点 学会初步应用平移的性质 学习过程 一、 探索新知 利用生活中常见平移事例,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号