《切线的判定定理2)2.ppt》由会员分享,可在线阅读,更多相关《切线的判定定理2)2.ppt(14页珍藏版)》请在三一办公上搜索。
1、人教版九年级上册,图中直线l满足什么条件时是O的切线?,探究:,l,方法1:直线与圆有唯一公共点,方法2:直线到圆心的距离等于半径,注意:实际证明过程中,通常不采用第一种方法;方法2从“量化”的角度说明圆的切线的判定方法。,(1)圆心O到直线l的距离和圆的半径有什么数量关系?(2)直线和圆位置有什么关系?为什么?(3)由此你发现了什么?,请在O上任意取一点A,连接OA,过点A作直线lOA。思考:,l,操作与观察:,(1)直线l经过半径OA的外端点A;(2)直线l垂直于半径0A 则:直线l与O相切,这样我们就得到了从“位置”的角度圆的切线的判定方法切线的判定定理,发现:,切线的判定定理:,经过半
2、径的外端并且垂直这条半径的直线是圆的切线。,对定理的理解:,切线必须同时满足两条:经过半径外端;垂直于这条半径,1、判断:(1)过半径的外端的直线是圆的切线()(2)与半径垂直的的直线是圆的切线()(3)过半径的端点与半径垂直的直线是圆的切线(),巩固:,两个条件缺一不可,O,r,l,A,OA是半径,l OA于A l是O的切线,定理的数学语言表达:,切线的判定方法有三种:直线与圆有唯一公共点;直线到圆心的距离等于该圆的半径;切线的判定定理即 经过半径的外端并且垂直这条半径的直线是圆的切线.,判定直线与圆相切有哪些方法?,归纳:,例1 如图,已知:直线AB经过O上的点C,并且OA=OB,CA=C
3、B。求证:直线AB是O的切线。,O,B,A,C,分析:由于AB过O上的点C,所以连接OC,只要证明ABOC即可。,例题:,有交点,连半径,证垂直,例2 如图,已知:O为BAC平分线上一点,ODAB于D,以O为圆心,OD为半径作O。求证:O与AC相切。,O,A,B,C,E,D,无交点,作垂直,证d=r,归纳:,例1与例2的证法有何不同?,(1)如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径,再证所作半径与这直线垂直.简记为:有交点,连半径,证垂直.(2)如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段,再证垂线段长等于半径长.简记为:无交点,作垂直,证半径.,2、(导学案
4、第80页第3题)如图,ABC中,AB=AC,AOBC于O,OEAC于E,以O为圆心,OE为半径作O.求证:AB是O的切线.,F,巩固:,无交点,作垂直,证半径,3、如图,AB是O的直径,点D在AB的延长线上,BD=OB,点C在O上,CAB=30.求证:DC是O的切线.,有交点,连半径,证垂直,小结:,1、知识:切线的判定定理着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可2、方法:判定一条直线是圆的切线的三种方法:(1)根据切线定义判定即与圆有唯一公共点的直线是圆的切线.(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线(3)根据切线的判定定理来判定 其中(2)和(3)本质相同,只是表达形式不同解题时,灵活选用其中之一,