《教材修订总体介绍(简).ppt》由会员分享,可在线阅读,更多相关《教材修订总体介绍(简).ppt(110页珍藏版)》请在三一办公上搜索。
1、人教版义务教育教科书数学(七九年级)修订情况介绍,新中国教育出版事业从这里开始,人民教育出版社中学数学室,对数学课程改革的回顾教材修订的依据教科书结构体系的修订修订中重点关注的一些问题具体内容修订举要,1、国际数学课程改革的大背景新数运动(20世纪50、60年代)回到基础(20世纪70年代)问题解决(20世纪80年代)标准运动(20世纪90年代至今),一、对数学课程改革的回顾,美国上世纪80年代以来的数学教育改革1980行动议程80年代数学教育的建议1989学校数学课程和评估标准2000中小学数学的原则和标准2006学前班到八年级数学课程焦点:寻求课程的一致性2008高中数学的焦点:推理和数学
2、意识 求变革新反思批判回归,2、新世纪我国基础教育课程改革上世纪的数学教育改革2001义教数学课程标准实验稿颁布 2005全部使用2004普通高中数学课程标准实验稿颁布 2012全部使用义教数学课程标准修订 2005开始 2007征求意见稿 2010修改稿 2011年颁布 2012使用新教材学习理念 冷静思考 探索创新 实践提高,课程标准的修订教材实验的反馈信息相关研究的成果,二、教材修订的依据,数学 原课标:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。修订后:数学是研究数量关系和空间形式的科学。数学与人类发展和社会进步息息相关,特别是随着现代信
3、息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。,1.课程标准的修订(2011年版),核心理念 原课标:人人学习有价值的数学 人人都能获得必需的数学 不同的人在数学上得到不同的发展 修订后:人人都能获得良好的数学教育 不同的人在数学上得到不同的发展。,学习领域及其重点关注内容 原课标:数与代数、空间与图形、统计与概率、实践与综合应用 数感、符号感、空间观念、统计观念、应用意识、推理能力 修订后:数与代数、图形与几何、统计与概率、综合与实践确立
4、了“数感”“符号意识”“空间观念”“几何直观”“数据分析观念”“运算能力”“推理能力”“模型思想”等八个义务教育阶段数学教育的关键词,并给出具体描述。为了适应时代发展对人才培养的需要,义务教育阶段的数学教育要特别注重发展学生的应用意识和创新意识。,课程目标 1.获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。通过数学抽象,从客观世界中得到数学的概念和法则,建立了数学学科;通过数学推理,进一步得到大量结论,数学科学得以发展;通过数学建模,把数学应用到客观世界,产生了巨大效益,反过来促进数学科学的发展。2.体会数学知识之间、数学与其他学科之间、数学与生活之间的
5、联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。3.了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。,课程内容具体变化数与代数 1.删去的内容对大数的认识与应用“能对含有较大数字的信息作出合理的解释和推断”“有效数字”的概念能根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题,2.增加的内容知道a的含义(这里a表示有理数)最简二次根式的概念、最简分式的概念整式的乘法增加一次式与二次式相乘能用一元二次方程根的判别式判断方程是否有实根和两个实根是否相等*了解一元二次方程根与系数的关系会
6、利用待定系数法确定一次函数的解析表达式*能解简单的三元一次方程组*知道给定不共线的三点坐标可以确定一个二次函数,3.要求上有变化的内容,课程内容具体变化图形与几何,“图形的认识”“图形与证明”合并为“图形的性质”。“图形与变换”“图形的变化”1.删去的内容关于等腰梯形的相关要求探索并了解圆与圆的位置关系关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等关于镜面对称的要求,2 增加的内容会比较线段的大小,理解线段的和、差,以及线段中点的意义了解平行于同一条直线的两条直线平行会按照边长的关系和角的大小对三角形进行分类了解并证明圆内接四边形的对角互补;了解正多边形的概念及正多
7、边形与圆的关系尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形*了解平行线性质定理的证明*探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧*探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等*了解相似三角形判定定理的证明,统计与概率领域,三个学段层次更加明确 第三学段:画扇形图,频数直方图,加权平均数,中位数,众数,方差。简单随机抽样。强调对“随机”的体会 通过案例了解简单随机抽样;通过表格、折线图等了解随机现象的变化趋势。加强体会数据的随机性明确指出所涉及的随机现象都基于简单随机事件删去极差、频数折线图,
8、综合与实践 第一学段,以实践活动为主要形式;第二学段,学生将在教师的指导下,经历有目的、有设计、有步骤、有合作的综合与实践活动;第三学段,(1)结合实际情境,经历设计解决具体问题的方案,并加以实施的过程,体验建立模型、解决问题的过程,并在此过程中,尝试发现和提出问题。(2)会反思参与活动的全过程,将研究的过程和结果形成报告或小论文,并能进行交流,进一步获得数学活动经验。(3)通过对有关问题的探讨,了解所学过知识(包括其他学科知识)之间的关联,进一步理解有关知识,发展应用意识和能力。学生将在教师的引导下,独立思考、合作研究,设计解决具体问题的方案,并加以实施,体验建立模型、解决问题的过程,并在此
9、过程中,尝试发现和提出问题。,2.教师实验的反馈教材将四个学习领域的内容“混编”,结构比较合理,符合课标要求,也符合学生的认知发展规律。教材的章导语、章头图及各小节的引入设计有整体性,选取了学生熟悉的事物和场景,能激发学生的求知欲和好奇心。教材内容的展开,注重从学生生活经验出发,创设情境,引导学生自主探究,培养学生不断探索、勇于创新的科学精神。教材设置的“思考”“探究”“归纳”栏目,给学生提出恰时恰点的问题,引导学生开展观察、分析、判断、类比、归纳、推理、证明等数学活动,对培养学生的自主学习能力、数学能力等都有很好的作用;教材设置的“观察与猜想”“实验与探究”“阅读与思考”“信息技术与应用”等
10、选学栏目,开阔了学生的视野,为学有余力的学生提供了丰富的学习素材。,问题:总体上:新课程提倡的理念难把握;新教材的改革设计难适应;教学方式、学习方式的变革难跟上;课程改革与考试评价制度的改革不配套;等等。“新课改后中学数学教材特点的比较研究”课题的调查中发现的一些问题认可教材的主要变化,但实际教学效果不明显。重视过程 联系实际 数学文化学生运算能力、逻辑思维能力降低;解决实际问题能力、探究能力、数学表达与交流能力没有显著提高。,一些具体意见关于教材体系(实数、二次根式、函数)关于探究性问题及其解决过程的分析(如何呈现合理的探究过程)关于教材的思想性(研究方法的引导)关于联系实际的内容(素材选取
11、、难度控制、与其他学科配合)对一些具体问题的处理(有理数乘法等),3.相关研究的成果中学数学核心概念、思想方法及其教学设计的理论与实践新课改后中学数学教材特点的比较研究中学数学学业评价标准的研究中国传统数学与现代数学教育理论研究与实践探讨教材纵横衔接研究,我们的基本想法 坚持我国数学教育优良传统,针对问题进行改革,认真处理好继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性,编写出一套符合学生终身发展需要的,体现社会发展及科学进步的,具有广泛适应性的高质量的初中数学教科书。,我国数学教育的优势要坚持重视双基,重视培养学生能力;数学课程教材具有体系结构严谨,逻辑性强,语言叙述
12、条理清晰,文字简洁、流畅,有利于教师组织教学,注重对学生进行基础训练等优点;数学教学强调对概念的理解和基本技能的训练,强调为学生铺设合理的认知台阶,强调变式训练等;学生的数学基础扎实,运算能力和逻辑推理能力强。,我国数学教育存在的问题要正视数学教学“不自然”,强加于人;缺乏问题意识;重结果轻过程,“掐头去尾烧中段”;重解题技能技巧轻普适性思考方法的概括,方法论层次的内容渗透不够,机械模仿多独立思考少,数学思维层次不高;“重形式而轻思想”。强调细枝末节多关注基本概念、核心数学思想少,对学生数学素养的提高不利。学生学习方法单一,被动。学生自主归纳抽象结论少,不利于创新精神的培养。,数学课改中应处理
13、好的几个关系学生主体与教师主导接受学习与发现学习基础与创新数学知识、能力与情感态度数学化与情境化(直观与逻辑、形象与抽象等)独立思考与合作交流过程与结果面向全体与因材施教书本知识与数学应用,修订原则:关注数学的科学性、教学的合理性,两者兼顾。教材体系保持相对稳定,适当调整,考虑使用教 材的惯性,三、教科书体系的修订,1.数与代数,一次函数后移,使学生学习函数的难点移后。二次函数提前,加强与一元二次方程的联系。反比例函数移后,便于学生理解涉及的一些物理等相关知识。,二次根式提前,便于解决勾股定理中根式化简等问题。分式提前,体现与整式的联系,便于加强学生的运算能力。,实数提前,便于学生理解点与实数
14、对的一一对应,以及不等式的解集。,2.图形与几何“三角形”与“全等三角形”“轴对称”直接连接,加强知识的整体性与连贯性。七上 几何图形初步 七下 相交线与平行线 平面直角坐标系 八上 三角形 全等三角形 轴对称 八下 勾股定理 平行四边形 九上 旋转 圆 九下 相似 锐角三角函数 投影与视图,3.统计与概率数据的收集、整理与描述(七年级下)删分层抽样数据的分析(八年级下)概率初步(九年级上)4.综合与实践 数学活动 课题学习“镶嵌”变为选学内容增加课题学习“最短路径问题”(八上轴对称)删去课题学习“重心”删去课题学习“键盘上字母的排列规律”数学活动调整(简单或不易完成的),数与代数,图形与几何
15、,统计与概率,修订章引言修订章小结重视学习方法的引导,加强教材的思想性加强探究,呈现合理的探究过程例题、练习、习题的处理推理证明的处理,四、修订中重点关注的一些问题,1.修订章引言 引言是全章的起始、序曲,是全章内容的引导性材料,具有先行组织者的重要作用。好的引言,对于加强基本思想教学、培养发现和提出问题的能力等都有重要作用。引言的主要内容 1.本章内容的引入。借助适当的问题情境(实际的或数学内部的)引入本章内容。2.本章内容的概述。使学生了解本章内容的概貌。3.本章方法的引导。使学生了解本章的主要数学思想方法和学习(研究)方法。,引言的关键在于“引”。“引”就是引发兴趣、引起求知欲、引出知识
16、、引导方法。引言是针对学生的,素材的选取要贴近学生生活实际,要与学生当前的认知水平相适应,语言要生动活泼。体现内容特点。对于某一领域的开篇,可以从宏观整体角度进行适当引导(如“有理数”,以“数系的扩展”为指导思想,按“引入新的数运算运算律”的线索加以阐述);知识发展过程中的某一章,要注意与已学内容的联系(如“平行四边形”,要注意引导学生借助三角形的学习经验);对于某些不能严格化的内容,可以用“模糊但不错”的方式处理(如“实数”,不能拘泥于严谨的要求)。与章头图的配合。“章头图”与“章引言”是有机整体,要尽量做到图文并茂、相互映衬。与小结呼应。引言与小结分别是一章的序曲和尾声,要注意两者相互呼应
17、,还要注意两者的差异。引言中的内容概述、方法引导目的是“了解概貌”,宜以具体例子为载体;小结中的内容及其思想方法的总结,目的是“把握本质”。,例:有理数的引言,例:相交线与平行线的引言,2.修订章小结 小结是对全章内容的梳理,是对本章内容所反映的主要思想方法归纳概括。小结对于提高教材的思想性,帮助学生“由厚到薄”地再认识本章内容,以及帮助教师提升教学的“立意”,都有重要作用。小结的主要内容(1)本章知识结构图。以框图形式表示本章知识要点、发展脉络和相互联系。可以是结构图(本章知识结构),也可以是流程图(本章内容展开过程)。(2)回顾与思考。“回顾”是对本章内容的整体概述,阐述本章内容之间、本章
18、内容与其他内容之间的联系,揭示本章内容反映的思想方法、研究方法等。“思考”是以问题形式引导学生回忆、总结全章内容,深化对本章核心内容及其反映的数学思想方法的理解。,重点修改的方面修订各章知识结构图,突出本章知识要点、发展脉络和相互联系;突出内容反映的思想方法。突出“思想性”,增加对主要内容及其反映的思想方法进行提炼与概括的内容,使小结体现全章思想的“点睛”作用。例如,在“一元一次方程”“不等式与不等式组”的小结中指出方程(不等式)是一种重要刻画相等(不等)关系的数学模型,“相交线与平行线”的小结,揭示研究几何图形的基本思路和方法等。修订小结中的思考问题,在重点、难点和关键上提出有思考力度的、具
19、体的问题,深化学生对本章核心内容及其反映的数学思想方法的理解。“思考”中的问题注意与新增的概述部分协调,做到前后呼应。,例:“相交线与平行线”小结,例:“整式的乘法与因式分解”小结本章我们类比数的乘法学习了整式的乘法整式的乘法主要包括幂的运算性质、单项式的乘法、多项式的乘法等利用除法是乘法的逆运算,学习了简单的整式除法并学习了因式分解这种与整式的乘法相反方向的变形它们都是进一步学习的重要基础由于整式中的字母表示数,因此数的运算律和运算性质在整式的运算中仍然成立在整式的乘法中,多项式的乘法要利用分配律转化为单项式的乘法,而单项式的乘法又要利用交换律和结合律转化为幂的运算因此,幂的运算是基础,单项
20、式的乘法是关键整式的除法也与此类似因式分解是与整式的乘法方向相反的变形整式的乘法是把几个整式相乘,得到一个新的整式;而因式分解是把一个多项式化为几个整式相乘知道了这种关系,不仅有助于理解因式分解的意义,而且也可以把整式乘法的过程反过来,得到分解因式的方法某些具有特殊形式的多项式相乘,可以写成乘法公式的形式,利用它们可以简化运算把乘法公式等号两边交换位置,就得到了分解因式的相应公式,3.重视学习方法的引导,加强教材的思想性加强思想性,有利于学生形成对数学的整体性认识,从而有利于实现数学教学的育人价值。代数内容的编写要体现数、式、方程、函数的发展脉络,要在相关章节(有理数、实数、整式加减、整式乘除
21、、分式、二次根式)体现“从数到式”的研究内容和方法等;在其他内容(几何、概率统计等)的编写中,体现相关学科的研究方法等。具体内容的编写中,注意类比、推广、特殊化等研究方法的渗透与概括,加强研究方法的引导,积累学生的数学活动经验。,例:数式通性 在数与代数领域,有理数及其运算是一切运算系统的基础。将其他运算的对象和数作类比,可以使我们得到很多研究方法方面的启示。数运算(加、乘、指数运算)和逆运算运算律大小关系 式运算(加、乘、指数运算)和逆运算运算律大小关系“式”是用字母代替数的结果。数有整数、分数、指数幂等,式就有整式、分式、根式等;在讨论式的运算时,可以类比数的运算,有系统地运用运算律(特别
22、是分配律)去简化各式各样的代数式和代数关系,归纳地探索、发现、定义和证明各种代数公式、代数定理。式中的“大小关系”就是“式的相等或不等关系”,由此发展出“等式的性质”和“不等式的性质”,也就是考察“式在运算中的不变性”。,在式的研究中,注意与数的概念、运算法则和运算律的类比。在相关章节(有理数、实数、整式加减、整式乘除、分式、二次根式)的小结中,在“概述”部分阐述“从数到式”的研究内容和方法等,特别注意类比、推广、特殊化等研究方法的渗透与概括;在具体内容的编写中,加强思想方法的引导。例如在多项式乘法的基础上讲乘法公式,通过“考察特殊情况,能获得多项式的乘法公式,这些公式可简化代数运算”的引导,
23、让学生自己尝试获得乘法公式,同时也培养了学生的归纳思维。,数式通性整式,数式通性分式,数式通性二次根式,数式通性“整式的乘除与因式分解”小结本章我们类比数的乘法学习了整式的乘法整式的乘法主要包括幂的运算性质、单项式的乘法、多项式的乘法等利用除法是乘法的逆运算,学习了简单的整式除法并学习了因式分解这种与整式的乘法相反方向的变形它们都是进一步学习的重要基础由于整式中的字母表示数,因此数的运算律和运算性质在整式的运算中仍然成立在整式的乘法中,多项式的乘法要利用分配律转化为单项式的乘法,而单项式的乘法又要利用交换律和结合律转化为幂的运算因此,幂的运算是基础,单项式的乘法是关键整式的除法也与此类似,数式
24、通性分式的“小结”分式与分数具有类似的形式,它们也具有类似的性质和运算本章通过与分数进行类比,得出分式的基本性质,引入分式的运算本章还学习了可化为一元一次方程的分式方程的解法,并应用这种分式方程解决简单的实际问题解分式方程的基本思路是先通过去分母将分式方程化归为整式方程,进而求整式方程的解,再经过检验得到分式方程的解 请你带着下面的问题,复习一下全章的内容吧 1.如何用式子形式表示分式的基本性质和运算法则?通过比较分数和分式的基本性质和运算法则,你有什么认识?类比的方法在本章的学习中起什么作用?2,例:类比的研究问题几何图形的研究线段的比较与角的比较,线段的中点与角的平分线,例:三角形全等条件
25、的研究思路,不采用探究形式,作为探究3得出结论后的拓展。,不采用探究形式,作为探究5得出结论后的拓展例题。,改为思考栏目,思考后归纳。,例:平方差公式公式教学的一般过程 一般到特殊的思想方法 探究 计算下列多项式的积,你能发现什么规律?(1);(2);(3)上面的几个运算都是形如(ab)的多项式与形如(ab)的多项式相乘,由于 因此,对于具有与此相同形式的多项式相乘,我们可以直接写出运算结果,即 也就是说,两个数的和与这两个数的差的积,等于这两个数的平方差这个公式叫做(乘法的)平方差公式,平方差公式是多项式乘法(ab)(mn)中ma,nb的特殊情形,例:如何研究平行四边形,研究的问题 一般四边
26、形:组成元素、度量(内角和等问题);特殊四边形:从边的特殊性和角的特殊性入手;边的特殊平行四边形:性质和判定;“性质”研究的是在“平行四边形”的条件下,它的组成元素有什么普遍规律,如边的大小关系、内角的关系、对角线的关系等;“判定”研究的是具备什么条件的四边形才是平行四边形;其他度量问题;角的特殊矩形,边的特殊菱形,边角都特殊正方形,都要研究性质和判定。研究的方法 化归为三角形、平行线等已有知识。特殊的平行四边形的研究要注意特殊的三角形的知识:矩形直角三角形;菱形等腰三角形。,4.加强探究,呈现合理的探究过程 在教材的展开过程中加强探究性,是积累学生的数学活动经验的需要,也是培养学生发现和提出
27、问题的能力、分析和解决问题的能力的需要。更加注重展现知识的来龙去脉,引导学生的思维活动,给学生一条观察事物(情景)、提出问题、分析问题、解决问题的线索,以增强学生的数学活动经验,利于发现和提出问题的能力、分析和解决问题的能力的培养。随着知识储备的增加,不断加强“探究”的理性思维成分。什么样的过程才是合理的?是不是每个内容都要经历观察、思考(探究)、猜想、证明的完整过程?,例:平行线的性质,原来的做法,例:平行四边形的性质,我们研究了平行四边形的组成要素边、角的性质,下面我们研究平行四边形对角线的性质。探究 如图,在中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证
28、明它们吗?,现在的处理,例:平行四边形的判定,现在的处理思考 通过前面的学习,我们知道,平行四边形对边相等、对角相等、对角线互相平分。反过来,对边相等、对角相等、对角线互相平分的四边形是不是平行四边形呢?也就是说,平行四边形性质定理的逆命题成立吗?可以证明,逆命题成立,这样我们得到平行四边形的判定定理:下面我们以对角线互相平分为例来进行证明。平行四边形的判定定理与平行四边形的性质定理互为逆定理,也就是说,当条件与结论互换以后,它们仍然成立。思考 我们知道,两组对边分别平行或相等的四边形是平行四边形。如果只考虑四边形的一组对边,那么它们满足什么条件时四边形是平行四边形呢?,例:矩形、菱形、正方形
29、的性质和判定,思考 由于矩形是平行四边形,所以它具有平行四边形的所有性质。但是,它的一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?对于矩形,我们仍然从它的边、角、对角线等方面进行研究,不难证明,矩形还有以下性质:思考 由于菱形是平行四边形,所以它具有平行四边形的所有性质。但是,它的一组邻边相等,它是否具有一般平行四边形不具有的一些特殊性质呢?从判定逆命题角度考虑判定定理前面我们研究了矩形的四个角,知道它们相等。它的逆命题成立吗?即四个角相等的四边形是矩形吗?进一步,三个角相等的四边形是矩形吗?,5.例题、练习、习题的处理习题的定位为教科书构建训练系统 数学教科书包括两方面的内容
30、:给人看的内容和给人做的内容,练习、习题就是给人做的内容,练习、习题、复习题构成了教科书的训练系统。要经过循序渐进的训练,使学生达到对内容理解的逐步深入,双基的落实,能力的提高。正文、习题是一个整体,习题是正文的自然延续,是通过训练帮助学生理解正文内容的。教科书的习题与中考题的定位不同,因此教科书的习题可以兼顾中考(越往后可以兼顾的内容越多),但绝不等同于中考题,要注意对中考题进行加工和改造,要训练本节(章)的核心知识。,各栏目习题内容的定位 练习:供课内使用,巩固对本课核心知识的理解。可以是单一概念应用的训练(如对概念原理的辨析、公式的简单应用等),也可以是与概念直接相关的操作的简单技能训练
31、(如解方程)。要关注核心内容,能有效地落实双基。习题:供课外使用,关注本节内容。又分为三个层次 复习巩固:要求和练习类似,可稍作综合和提高。综合运用:问题涉及相关知识的联系,要在数学思维层面体现思想方法,技能技巧,还要在数学能力方面体现综合运用本节知识解决问题。问题可以和相关内容建立联系,但要注意解决问题的关键应是本节的重点、难点、核心知识。拓广探索:是对本节内容的拓展和延伸或利用本节知识解决更深层次的问题,要注意探究性、拓展性。复习题:供复习全章使用,其三个层次的要求和习题中的三个层次类似,但要注意其出发点是整章。,对习题的修订 注意题目的基础性、普及性、发展性,当前应特别注意以下几点:针对
32、性:要抓住本节课(本节、本章)内容的核心,促进概念的理解和思想方法的生成。有效性:要关注通性通法,抓住基本概念,不要在技巧上做文章。代数部分要注意适当加强运算的训练。创新性:题目要有新意,教材建设就是不断继承发展的过程。要注意不离开内容本质这个“根”,不是奇、特;要体现真正的应用,不要人为编造。层次性:要关注层次和梯度,理解教材有关习题的各部分、各栏目的要求,形成一个立体化的训练系统。精确性:不仅要保证科学性和准确性,而且要尽量达到精确。要把握所选习题是否能达到训练效果,题目要仔细推敲,不能有歧义。,数量与题型 每课时或一个知识点(可能是2课时)安排一个练习,每节安排一个习题,每章安排一个复习
33、题。练习不分层次,习题、复习题分成“复习巩固”“综合运用”“拓广探索”三个层次。练习每课时13个(两个课时的35个),习题每课时35个,复习题每课时1个左右。以解答题为主,适当考虑多种题型。,6.推理与证明的安排直观与推理的结合 使推理成为学生观察、实验、探究得出结论的自然延续,逐步养成严谨的思维习惯。推理论证不仅是证明或推翻猜想,也是发现新结论的重要手段。循序渐进“说点儿理”“说理”“简单推理”“符号表示推理”适时安排,起点早一以贯之,七上“几何图形初步”说点儿理七下“相交线与平行线”说理 简单推理 用符号表示推理八上“三角形”要求学生证明“全等三角形”“轴对称”八下“勾股定理”“平行四边形
34、”九上“旋转”“圆”九下“相似”,一以贯之,循序渐进,适当加强对“推理与证明”的要求 在“相交线与平行线”适当加强推理与证明,结合实例从“说理”到“简单推理”,并正式出现“证明”(让学生看到完整的证明,不要求学生完整证明,要求学生会填空完成一些关键步骤和填理由),注意循序渐进,推理的步骤控制好长度 相关章节对证明的要求适当增加。正式出现“证明”之前,循序渐进给出严格的推理的符号语言。,在图5.1-2中,1与2互补,3也与2互补,由“同角的补角相等”,可以得出1=3同理,2=4这样,我们得到:对顶角相等上面推出“对顶角相等”这个结论的过程,可以写成下面的形式:因为 1与2互补,3与2互补(邻补角
35、的定义),所以 1=3(同角的补角相等),七下对学生的要求,有理数的乘法法则单项式和多项式的概念一元一次方程的解法“不等式与不等式组”的体系安排“总体”“个体”的定义整式的除法一次函数与一次方程(组)、一次不等式反比例函数性质的讨论一些题目、内容调整,五、具体问题修订举要,规定 归纳 利用数轴 满足运算律例如,为什么规定(3)(5)=15?希望保持分配律a(b+c)=ab+ac的结果。(3)(5)(3)(05)(3)0(3)5 0(15)15 让(1)(1)1行不行?会出现矛盾:令a1,b1,c1,就会有 1(11)112 而另一方面又有 1(11)100,1.有理数的乘法法则,原来的处理:利
36、用数轴通过蜗牛运动的例子得出,现在的处理 为了突出体现在具体实例的基础上,归纳给出相关概念、法则的编写思路,从引入负数后的乘法算式分类开始,由两个正数的乘法逐步过渡到“负负得正”。注意在此过程中体现数域扩充过程中,运算法则的一致性,原来的做法 先安排单项式的实例,给出单项式的概念;再安排多项式的实例,给出多项式的概念。现在的做法 为了突出字母表示数的思想,在“整式的加减”一章的第一节开头集中安排字母表示数的实例,然后给出单项式与多项式的概念。,2.单项式和多项式的概念,原来的做法 在3.2和3.3节既有解方程,也有解决实际问题,重点不突出。现在的做法 为使概念、解法、应用在全章前、中、后各部分
37、各有侧重的编写意图变得更加明确,在3.2和3.3节适当增加解方程的内容,降低实际问题的难度。在3.4节增加解实际问题的例题与小结,以加强数学模型思想的学习。,3.一元一次方程的解法,原来的做法 第一节给出一元一次不等式的概念与解法,第二节解决实际问题。,4.“不等式与不等式组”体系安排,现在的做法 将第一节的一元一次不等式的概念与解法移入第二节,使一元一次不等式的内容安排得更为紧凑。第1节“不等式”,基本保持现有内容,加单纯运用不等式性质的练习题;本节内容主要是不等式、不等式解集的概念,不等式的性质,直接利用不等式的性质解不等式。第2节“一元一次不等式”,先结合一个实际问题引入一元一次不等式的
38、概念,一元一次不等式的解法加强类比方程的解法,先安排一个体现解一元一次不等式完整步骤的题目,再归纳一元一次不等式的解法,最后安排两个实际问题。第3节更换“一元一次不等式组”的引例,删去不等式组解决实际问题的问题。,5.总体与个体的定义 学校要了解七年级学生的身高情况,进行抽样调查,总体是()。(A)全校学生(B)全校学生的身高(C)七年级所有学生(D)七年级所有学生的身高,中国大百科全书数学“总体又称母体,是一个统计问题所研究的对象的全体,总体中的每一个单元成员称为个体。例如,研究工厂生产的某种产品质量时,该工厂的全体这种产品是总体,每件这种产品是个体;为治理某一江水的污染问题,以500毫升水
39、为单位进行各种化验,这条江的江水是总体,每500毫升的水是个体。”“为了进行统计推断,需要对总体给出数学描述,一般的统计问题中只涉及个体的一个或几个数量指标,因此数学上常把个体的数量指标X(一维的或多维的)取值的全体作为总体,指标值x为个体。”每一种说法中,总体与个体是按照同一解释界定的。虽然两种说法不尽相同,但是前者所说的总体、个体与后者所说的总体、个体之间存在一一对应关系,这就是说两者所反映的总体和个体的从属关系是完全一致的。两者仅有说法上的差别,而本质相同,它们并不矛盾。,机会的数学陈希孺 部分推断整体的特点,在抽样调查中看得很清楚。一个群体(人群或任何同类对象,如工厂、学校等由个体组成
40、的集体),在统计学上称为总体(母体)。我们所要了解的,是该群体作为一个整体的某项指标或性质。典型的例子是上一节所讲的一省农民的平均收入,这个“平均收入”是一个整体性质,用统计学的语言说,是一个总体指标。我们抽取该省一部分农民在统计学上称为样本或子样,所抽出的农民人数称为样本量做调查而有关总体指标(即全省农民平均收入)的结论,即依这一部分的情况做出。,把所有研究对象作为总体,每一研究对象作为个体,能简明地反映调查范围及总体与个体的从属关系。在调查多种数量指标的问题中,用全体研究对象作为总体,每一研究对象作为个体,对应于不同个体取多维数量指标值,表达更方便、简明和清晰。直接把所有研究对象的数量指标
41、取值作为总体,可以强调调查目的,而且对导出总体的分布的表述也比较自然。在总体和个体的概念上,重点是它们之间的从属关系,而不在于不影响这种关系的的定义方式上。很多概念不必过度挖掘,只要学生明白其基本意义就可以,过分强调非本质的表述,可能导致重点的偏离。,教材的呈现,原来的做法 反映函数与方程、不等式联系的内容单设节。现在的做法 将原教材14.3节中的内容简化,即结合“一次函数”一节的一些例题,以实际问题引出,反映函数与方程、不等式的联系,而不再为此单设一节。结合原“14.2.2 一次函数”的例5(买种子的问题),讨论一次函数与一次方程、一次不等式的关系。并增设“19.2.3 一次函数与二元一次方
42、程(组)”,讨论一次函数与二元一次方程(组)的关系,6.一次函数与一次方程(组)、一次不等式,原来的做法 在“整式的乘除与因式分解”一章安排一小节“整式的除法”。现在的做法 章名改为“整式的乘法与因式分解”“整式的除法”不单独设节 在讲完整式的乘法后,从逆运算的角度介绍同底数幂的除法、单项式除以单项式、多项式除以单项式,够用即可。,7.整式的除法的处理,原来的做法 讨论性质时,k0和k0的情况同时出现。现在的做法 为层次清楚,按照k0和k0“分类”讨论性质,突出与一次函数性质研究方法的类比。k0时:描点画图观察图象归纳性质(增减性)回到解析式解释。k0时:学生自己探究。不讨论对称等几何性质。,8.反比例函数性质的讨论,9.一些题目、内容的调整,正负数的实际背景油菜籽问题(一元一次方程)调水问题(一次函数)磁盘存储问题(二次函数)圆周角引入的实际背景三视图带“洞”的问题“从测坝高到测山高”的拓展内容改为选学,托起绿色的希望,教材是重要的教学资源教师是教材发挥作用的关键教材建设需要每一位教师的参与,托起绿色的希望,李海东人民教育出版社中学数学室010-,