《光与物质的相互作用光的辐射理论.ppt》由会员分享,可在线阅读,更多相关《光与物质的相互作用光的辐射理论.ppt(43页珍藏版)》请在三一办公上搜索。
1、,一.一般特征,物体在任何温度下都辐射电磁波。,(例如铁块温度逐渐升高时的现象),1.基本性质:,平衡热辐射:,物体辐射的能量等于在同一时间内所吸收的能量,1,第九章 光的量子性 激光,1 热辐射,物体 辐射场,2.单色辐出度 r(,T),从物体单位表面积上单位时间内发出的频率在 附近单位频率间隔内的电磁波的能量。,(单色辐射本领,书上:辐射本领的谱密度。),3.(总)辐出度 R(T),2,在给定温度下,单色辐出度 r()就是从物体单位表面积发出的辐射能通量(对频率)的分布函数。,(书上:辐射本领 R),p.260,(1.8)式,4.基尔霍夫定律,吸收本领 a(,T),平衡热辐射,任何物体在同
2、一温度T 下的单色辐出度 r(,T)与单色吸收本领 a(,T)成正比,其比值只由 和 T 决定,而与物体性质无关。,(对波长),二.黑体辐射的基本规律,1.(绝对)黑体:完全吸收各种波长电磁波而无反射的物体,即理想的 a(,T)=1 的物体。它的 r(,T)最大,且和材料、表面状态无关。,F(,T)是与物质、物体表面状况无关的普适函数。,维恩设计的黑体-空窖(空腔),只注意大小:,实验测得黑体的 r0(,T),3,3.维恩(Wien)位移定律,2.斯特藩-玻耳兹曼(Stefan-Boltzmann)定律,=5.6710 8 W/m2 K4,黑体的辐出度 RT,,斯特藩-玻耳兹曼常数,极大值所对
3、应的波长 M,维恩常数 b=2.898103 mK,4,经典理论遇到无法克服的困难。,4.理论与实验的对比,从经典物理学曾导出几种黑体辐射公式:,维恩公式,,(短波长区域较好,长波方面不对。),瑞利-金斯公式,,(“紫外灾难”),普朗克给出了与实验结果完全符合的公式,提出“能量子假说”,,5,三.普朗克的黑体辐射公式和能量子假说,2.普朗克假定(1900),h=6.626075510 34 Js,3.普朗克公式(p.269p.271),经典,能量,在全波段与实验结果惊人地符合,物体-大量振子组成,和辐射场交换能量。,经典理论:振子的能量可连续取值。,1.“振子”的概念(1900 年以前已有),
4、量子,频率为 的谐振子,其能量取值为 能量子 0=h 的整数倍。,或,(意义),6,(1918,Nobel Prize),一.光电效应,光电子,光电效应,实验装置,2 光的粒子性,饱和光电流强度 im 与入射光强 I 成正比,1.实验规律:,(这表示 单位时间内从阴极发出的光电子数目与光强成正比),7,只有当入射光频率 v 大于一定的频率 v0 时,,才会产生光电效应。0 称为该金属的截止频率,或红限频率,,8,V0=K C,与入射光强无关,光电子的最大初动能为,截止电压,光电效应是瞬时发生的,时间不超过109 s。,2.爱因斯坦的光子假说 对光电效应的解释,经典物理学所遇到的困难:,光波的能
5、量分布在波面上,阴极中电子积累能量克服逸出功需要一段时间,光电效应不能在瞬时发生。,普朗克的量子假定 还不够:,它只涉及发射或吸收时振子能量不连续,未涉及在空间传播的辐射场的能量。,9,按照光的经典电磁理论,光波的强度与频率无关,电子吸收的能量也与频率无关,不应存在截止频率!,电磁辐射的能量在空间不是连续分布的,而是由能量量子(光子)组成,每个光量子的能量为,爱因斯坦光量子假设(1905),=h,对光电效应的解释,显然,当 h A 时,不发生光电效应。,红限频率,(光电效应的意义),光量子具有“整体性”,在以光速运动时“不瓦解”,且只能整个地被吸收或发射。,10,A 是阴极材料的脱出功。,电子
6、吸收一个光子能量 h,从阴极逸出而成为光电子,其最大动能为,(A.Einstein,1921,Nobel Prize),二.光的波粒二象性 康普顿效应,1.光的波粒二象性,光的性质-波粒二象性,在有些情况下,光突出显示波动性;,粒子不是经典粒子,波也不是经典的波。,基本关系式,粒子性:能量,动量 p,波动性:波长,频率,而在另一些情况下,则突出显示粒子性。,11,(整体性),(弥散性,可叠加性),2.康普顿效应,康普顿(Compton)研究 X 射线在石墨上的散射,实验规律:,电子的 Compton波长,康普顿效应的特点,12,康普顿的解释:,X 射线光子与“静止”的“自由电子”弹性碰撞,碰撞
7、过程能量守恒,动量守恒,解得波长偏移为,康普顿散射实验的意义,康普顿效应验证了光的量子性,经典电磁理论的困难,13,e,(A.H.Compton,1927,Nobel Prize),激光(laser),也音译为镭射,它的意思是“辐射的受激发射的光放大”(Light Amplification by Stimulated Emission of Radiation),或者说,“受激辐射的光放大”。,3 激光,1916,Einstein,关于受激辐射的理论。4050年代,观测到受激辐射。1954,Townes 做成 微波激射器(maser)。1960,Maiman 做成第一台激光器(红宝石)。19
8、60,1962,连续工作的 He-Ne 气体激光器。,14,一般性质:,方向性极好(发散角10-4弧度),脉冲瞬时功率大(可达10 14瓦 以上),空间相干性好,有的激光波面上 各个点都是相干光源。,时间相干性好(10-8埃),相干长度可达几十公里。,相干性极好,亮度极高,特点,波长范围:极远紫外 可见光 亚毫米,(100 n m)(1.222 m m),(X 激光),15,按工作方式分,连续式(功率可达104 W)脉冲式(瞬时功率可达1014 W),种类:,固体(如红宝石Al2O3)液体(如某些染料)气体(如 He-Ne,CO2)半导体(如砷化镓 GaAs),按工作物质分,一.粒子数按能级的
9、统计分布 原子的激发,由大量原子组成的系统,在温度不太低的 平衡态,原子数目按能级的分布服从 玻耳兹曼统计分布:,16,若 E2 E 1,则两能级上的原子数目之比,数量级估计:,T 103 K;,kT1.3810-20 J 0.086 eV;,E 2-E 11 eV;,17,要产生激光,必须使大量原子激发,在两能级间形成 N2 N1,这称为粒子数布居反转(population inversion)。,原子激发的几种基本方式:,1.气体放电激发;,2.原子间碰撞激发;,3.光激发(光泵浦)。,激光器中必须有激发装置(能源)提供能量。,二.自发辐射 受激辐射 和受激吸收,1.自发辐射(sponta
10、neous radiation),h,18,设 N1、N2 为单位体积中处于 E1、E2 能级的原子数。单位体积中单位时间内,从 E2 E1自发辐射的原子数,21 自发辐射系数,一个原子在单位 时间内发生自发辐射过程的概率。,各原子自发辐射的光是互相独立的,相位上随机的,或者说是互不相干的。,19,2受激辐射(stimulated radiation),全同光子,设 u(、)代表温度为 时,频率为=(E2-E1)/h 附近单位频率间隔的外来光的能量密度。单位体积中单位时间内,从 E E受激辐射的原子数:,20,写成等式,B21 受激辐射系数,W21 一个原子在单位时间内发生 受激辐射过程的概率
11、。,则,受激辐射光与外来光的频率、相位、偏振方向及传播方向均相同-有光的放大作用。,令 W21 B21 u(、T),21,3.吸收(absorption),h,上述外耒光也有可能被吸收,使原子从 E1E2。,单位体积中单位时间内因吸收外来光而从 E1E2 的原子数:,写成等式,B12 吸收系数,令 W12 12 u(、T),22,A21、B21、B12 称为爱因斯坦系数。,爱因斯坦在 1916 年从理论上得出(下册 p.300,p.301),爱因斯坦的受激辐射理论为六十年代初实验上获得激光奠定了理论基础。,没有实验家,理论家就会迷失方向。,没有理论家,实验家就会迟疑不决。,B21=B12,W1
12、2 一个原子在 单位时间内发生 吸收过程的概率。,23,三.粒子数反转与光放大,1.为什么需要粒子数反转?,必须 N2 N1(粒子数反转)。,因 B21=B12,W21=W12,要产生激光,必须,24,2实现粒子数反转的实例,例:He一Ne 气体激光器的粒子数反转,He-Ne 激光器中,He 是辅助物质,Ne 是激活物质,He与 Ne之比为51 101。,Ne 原子某些能级之间可形成粒子数反转,其原因在于合适的能级结构。,25,电子碰撞,碰撞转移,He,Ne原子部分能级图,26,He-Ne激光管中实现粒子数反转的原理:,(要形成粒子数反转,除了增加上能级的粒子数外,还要设法减少下能级的粒子数。
13、),Ne 的 5S,4S 是亚稳态,寿命较长;但下能级4P,3P(也是激发态)的寿命很短。假如设法使很多Ne原子处于5S或4S,就可能在5S4P,5S3P,4S3P 形成粒子数反转。,放电管做得比较细(毛细管),可使原子与管壁碰撞频繁。借助这种碰撞,3 S态的Ne原子可以将能量交给管壁发生“无辐射跃迁”而回到基态,及时减少3S态的Ne原子数,有利于激光下能级4P与3P态的抽空。,怎样将大量Ne原子激发到亚稳态5S和4S呢?,27,因Ne的 5S 和 4S 与 He的 21S 和 23S 的能量几乎相等,当两种原子相碰时很容易发生能量的“共振转移”。在碰撞中 He 把能量传递给 Ne而回到基态,
14、同时 Ne被激发到 5S 或 4S。,气体放电,用电子碰撞来激发原子。但是Ne 原子被激发的概率很小,而He被激发(到23S和21S能级)的概率则大得多。He 的23S,21S这两个能级都是亚稳态,很难回到基态;于是在He 的这两个激发态上容易聚集较多的原子。,Ne原子可以产生多条激光谱线,图中标明了最强的三条:0.6328,1.15 m,3.39。,(它们都是从亚稳态到非亚稳、非基态之 间发生的,因此较易实现粒子数反转。),28,四.增益系数,激光器内受激辐射光来回传播时,并存着 增益 和 损耗。,增益光的放大;,损耗光的吸收、散射、衍射、透射(包括 一端的部分反射镜处必要的激光输出)等。,
15、在激光形成阶段,增益损耗。,在稳定工作阶段,增益损耗。,1激光在工作物质内传播时的净增益,设 x0处,光强为 I0,29,即单位长度上光强增加的比例(相对增长)。,一般G不是常数。为了简单,先近似认为G是常数:,x I,x+dx I+d I,有 d I Idx,写成等式:d I=G I dx,定义:增益系数 G(gain coefficient),得,30,2.考虑激光在两端反射镜处的损耗,I0,全反射镜,部分反射镜,I1,I2,R1、R2 左、右两端反射镜的反射率.,显然有I 1=R 2 I 0 eGL,=R 1 R 2 I 0 e2GL,I 2=R 1 I 1 eGL,在激光形成阶段,要求
16、 I2/I0 1,,即 R1 R2 e2GL 1,或说,于是,31,式中Gm称为阈值增益,即产生激光的最小增益。,在激光稳定阶段:光强增大到一定程度后,,有 I2/I0=1,即,通常称为阈值条件。,为什么光强不会无限放大下去?原因是实际的增益系数G不是常量。当 I 增大时,粒子数反转程度会减弱,使G降低(负反馈)。当增益系数G降到 GGm时,就稳定下来。,32,五.光学谐振腔 纵模与横模,(optical harmonic oscillator),(longitudinal mode and transverse mode),激光器有两个反射镜,它们构成一个光学谐振腔。,33,光学谐振腔的作用
17、:,1.使激光具有极好的方向性(沿轴线);,2.增强光放大作用(延长了工作物质);,3.使激光具有极好的单色性(选频)。,对于可能有多种跃迁的情况,可以利用阈值条件来选出一种跃迁。,选频之一:,例如,若希望氦氖激光器只输出波长为 0.6328 m 的激光,我们可以控制反射镜的 R1、R2,使反射镜只对这种波长反射率高,易满足阈值条件。而另两个波长的光(红外)不能放大。,34,例如,氦氖激光器,设 Ne 原子的 0.6328 m 受激辐射光的谱线宽度为,如图,1.3109 Hz。,对于单一的跃迁,还可以利用选择纵模间隔的方法,进一步在谱线宽度内再选频。,选频之二:,然而,利用谐振腔,实际上激光的
18、谱线宽度可以小到 10-8。这是为什么呢?,35,光学谐振腔两端反射镜处必是驻波的波节,所以腔长 L 必为半波长 2 的整数倍。换用真空中波长=n,得,(k=1,2,3,),k真空中波长,n 谐振腔内媒 质的折射率,这就是谐振腔沿长度方向(纵向)的第 k 个简正模式的波长。这些简正模称为纵模。,36,可以存在的纵模频率为,相邻两个纵模频率的间隔为,数量级估计:,1,n1.0,c 108 ms,氦氖激光器 0.6328 m 谱线宽度为,=13109 Hz,因此,在 区间中,可以存在的纵模个数为,37,用加大纵模频率间隔k的方法,可以使 区间中只存在一个纵模频率。单模输出。,比如,若管长 L 缩短
19、为 10 c,,即 L L/10,则 k10 k,在 区间中,可能存在的纵模个数为=1。,于是就获得了谱线宽度非常窄的激光输出,极大地提高了实际0.6328 m 谱线的单色性。,L=100 cm,L=10 cm,38,激光除了有纵模外,还有横向驻波模式。,小结:激光器基本组成部分(产生激光的条件),.激励能源(提供能量,使原子激发),.工作物质(有合适的能级实现粒子数反转),基横模在激光光束的横截面上各点的相位相同,空间相干性最好。,.光学谐振腔(方向性,光放大,单色性),39,六.激光的特性及其应用,1.光束方向性极好,以下特性是激光获得广泛应用的基础:,2.时间相干性(单色性)极好,3.空
20、间相干性极好,4.光强度极大(短时,局域),5.超短脉冲,精细聚焦,以下的各种技术应用或研究领域,主要利用激光的什么特性?,准直,定位,测距,测速,精密测厚、测角,加工,,全息术;非线性光学;集成光学,医学、生物学、化学 中的应用,光通讯,光纤通讯,光盘信息存取,,军事上的应用,40,例激光光纤通讯,由于光波的频率比无线电波的频率高好几个数量级,一根极细的光纤能承载的信息量,相当于图片中这么粗的电缆所能承载的信息量。,一些例子,41,例2激光原子力 显微镜(AFM),用一根钨探针或硅探针在距试样表面几毫微米的高度上反复移动,来探测固体表面的情况。,试样通常是微电子器件。,42,探针尖端在工作时处于受迫振动状态,其频率接近于探针的共振频率。,探针尖端在受样品原子的范得瓦尔斯吸引力的作用时,其共振频率发生变化,因而振幅也随之改变。,为了跟踪尖端的振动情况,将一束激光分成两束,其中一束通过棱镜反射,另一束则穿过布喇格室,然后从探针背面反射回来。,这两束光重新会合后发生干涉,根据干涉的情况可知探针振动的变化情况。据此可探知试样表面的原子起伏情况。,可检测出尺度小至 5毫微米的表面起伏变化。用于检查微电路成品,检查制作微电路用的硅表面的质量。,-结束-,43,