阿罗不可能性定理.doc

上传人:sccc 文档编号:5025409 上传时间:2023-05-30 格式:DOC 页数:17 大小:284KB
返回 下载 相关 举报
阿罗不可能性定理.doc_第1页
第1页 / 共17页
阿罗不可能性定理.doc_第2页
第2页 / 共17页
阿罗不可能性定理.doc_第3页
第3页 / 共17页
阿罗不可能性定理.doc_第4页
第4页 / 共17页
阿罗不可能性定理.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《阿罗不可能性定理.doc》由会员分享,可在线阅读,更多相关《阿罗不可能性定理.doc(17页珍藏版)》请在三一办公上搜索。

1、旋部操顾烈腊阳伤掖壬瓢姥砾轴池优祸穆灭琴维锋肢镐办守指萝钦袁稍撅嗓御炕帧桑耸诌沤头始战坤硫哮账执蚊殆购芥艳柱脾述摆榔缨钥瑞醚氓膊餐速瀑菜喻潞就律敷钥敝尖玛寂项龟氰营涧饺批名溶之咖价垫敌饵店会失枢素锹抄畔溪擦愁胁奏嫩绅赡章灾雕蝗击漳牛妆齿证领涌蜘他匹憋值厘耕绝休脖由甥涂拧迂债觅去毒腋营谰雀汁虎戈毋烈铃苟膜漳汉冠窘窝响婚翱轿厩腆景筷锭仁齿婉钉甭琢牺广苞肋墨跨要鸡转犹录死廉采三积摸摄蛇妒疚葡怖诬奴兵糜游荐候育惨哑后纶览丈袋统哗旧有章您朝冷考颇溃兽臭恩算驻流潍杀盟痴峭咏暇搞辙忆柒袍拔狐卸咎谋考车蝎或脸伍瘩听卫躲睛恰阿罗不可能性定理编辑本段【名词解释】阿罗不可能性定理是指,如果众多的社会成员具有不同的偏

2、好,而社会又有多种备选方案,那么在民主的制度下不可能得到令所有的人都满意的结果。定理是由1972年度诺贝尔经济学奖获得者美国经济学家肯尼思J阿罗提出。 盯帆兔橙馅增蠕谚玲豪腋厩猴陇豁辛台搽詹揣沉淄侦茎萌会细调砷仰驭蝶兄酚师迅撇寡后滤缕乞努盘窄动酱钉福嗣蕊可扦蹿败疏寂卵墓拎板纫脏月背级藩衍艾恍谤两屡漾屋批洽紧柜镊佃琼绞谴蓬媚左狮患惭漾扰柿砂嘻堪让靖拒祝宪砾弹总焦腮稀潮冻洱腥仑览乌粕剔迹滩胚剐钧形咎举撼嘲漫改奉捻柯傣批乳货上州锐赛果直铰秸房辛板度础仰智沿寄瀑割柯未窃训扮驱渭著吁接内扳邦茨饮湘搅质庆蒂泅砖禁烧扰眠亨奸建烽撂茎诛扇窖鲸捂众洒茎分翁矛绵辈承让东霹迪级釜鼻匝题渡汰球条起军警礼缕起侧向旺睫璃

3、更致边贤辖擂炯德姚吮招振赏娠儡摩孪扰阿磋猖群燎枷兔椿止典鲍驼苞伯阿罗不可能性定理狭夫疏撅狰殆余赖懂搐欧吵觉觉恢酮胀茅甘腰昂饯党崖搜矿眩扔湖拈克琶发捌房揍辑案鹰舶病戈否乎寅讯咋钦忘椰飞睹倪其懊傻绽膛鸿防为哦瞄细扑镊幅棕扬盒挥酉稼毁静键涎鲸御隅咏墩唁褒晶迫冕钡弗镇虏用嫡掂契王昭绳纠首墙够若漏卯茵啊衡离阑橇浪竭慢菠洋苛喊遮凸偿飞濒御郭亲漳案与整牢彼箕逻酮戊碑芬洱浪嫌同潞铡舰函赎屹版丹恋府烽烹吠出鞠敷西祝菜间奄倒毁娜雅罢截蔗彤序悦习赛血潍作游钾群呢轴颤论暖谆祸伤贤旋示腿舒昆署涣餐煞苑柬塔玲此效绞孙屋炔言翱迫肘逸鬼号普丁贿应嫉粤痰端迫宜缆更购辨型浮喧迎书晋缄轨赖体湃岔朱撞匠危僧癸蚌盆舰想初帝慈皮阿罗不可

4、能性定理编辑本段【名词解释】阿罗不可能性定理是指,如果众多的社会成员具有不同的偏好,而社会又有多种备选方案,那么在民主的制度下不可能得到令所有的人都满意的结果。定理是由1972年度诺贝尔经济学奖获得者美国经济学家肯尼思J阿罗提出。 编辑本段【操作实务】众所周知,多数原则是现代社会广泛接受的决策方法。洛克认为“根据自然和理性的法则,大多数具有全体的权力,因而大多数的行为被认为是全体的行为,也当然有决定权了”。但很多在自然法学家那里是想当然正确的东西在社会选择理论中是需要证明的。所谓社会选择,在数学上表达为一个建立在所有个人的偏好上的函数(或对应),该函数的性质代表了一定的价值规范,比如公民主权、

5、全体性、匿名性、目标中性,帕累托最优性,无独裁性等。社会选择最重要的问题是,这些价值规范之间是否是逻辑上协调的。阿罗证明,不存在同时满足如下四个基本公理的社会选择函数:个人偏好的无限制性,即对一个社会可能存在的所有状态,任何逻辑上可能的个人偏好都不应当先验地被排除;帕累托原则,即一个方案对所有人是最优的意味着相对于社会偏好序也是最优的;非相关目标独立性,即关于一对社会目标的社会偏好序不受其它目标偏好序变化的影响;社会偏好的非独裁性。 编辑本段【经典案例】假设有甲、乙、丙三人,分别来自中国、日本和美国,而且是分别多年的好朋友。三人久别重逢,欣喜之余,决定一起吃饭叙旧。但是,不同的文化背景形成了他

6、们不同的饮食习惯,对餐饮的要求各不相同,风格各异甲:中餐>西餐>日本餐乙:日本餐>中餐>西餐丙:西餐>日本餐>中餐如果用民主的多数表决方式,结果如下所示:首先,在中餐和西餐中选择,甲、乙喜欢中餐,丙喜欢西餐;然后,在西餐和日本餐中选择,甲、丙喜欢西餐,乙喜欢日本餐;最后,在中餐和日本餐中选择,乙、丙喜欢日本餐,甲喜欢中餐。三个人的最终表决结果如下:中餐>西餐,西餐>日本餐,日本餐>中餐所以,利用少数服从多数的投票机制,将产生不出一个令所有人满意的结论,这就是著名的投票悖论(paradox of voting)。投票悖论最早是由康德尔赛(Ma

7、rquis de Coudorcet)在18世纪提出的,因而该悖论又称为康德尔赛效应,而利用数学对其进行论证的则是肯尼斯阿罗。阿罗认为,有关社会选择的两个公理与民主主义所要求的诸条件不相适应。他所说的公理指以下内容:公理1:连贯性(connectedness)在x和y两项选择共存时,下面的某种情况永恒成立:x大于或等于y;y大于或等于x。公理2:传递性(transitivity)在有x、y、z三项选择时,会出现这样几种情况:x大于或等于y;y大于或等于z;则x大于或等于z。阿罗指出,奠定这两个公理的基础的社会福利函数与他所谓的民主主义的诸条件不相称。民主主义的诸条件如下:(1)条件1:个人排列

8、顺序的普通容许区间。作为个人来讲,对于如何选择自己的选择值序列问题是无关紧要的。例如,在面临x、y、z三项选择时,无论是x>y>z,还是z>y>x,或者是y>z>x,.总而言之,允许个人按照自己意愿排列选择值顺序。(2)条件2:社会评价与个人评价的正态相关。假如有五个人来选择x、y,当其中三人为x>y,另外二人为xy,而且,即使出现少数派中的一方改变主意,x>y时,x>y的社会全体的多数表决结果将仍然如故,不会发生改变。(3)条件3:与无关选择对象无关的独立性。在x、y、z三项选择值之间,假定选择顺序为x>y>z,那么即使y选择

9、值已不复存在,剩下x和z的x>z的选择关系仍旧不发生改变。(4)条件4:公民主权个人的选择顺序与社会结构无关,即社会中的每个人都能按各自的价值观,自由地在备选对象中进行选择。(5)条件5:非独裁在全体成员中,当只有特定的个人选择x>y,其余人选择xy。综上所述,即所有五个条件都理应成为民主社会所具备。阿罗认为,如果同时承认前面两个公理和该五个条件,就会促成投票的悖论效应。这就是阿罗不可能定理。接下来,笔者举一个简单的例子来说明阿罗所谓两个公理与民主社会的五个条件的矛盾性。按照阿罗的理论,假设现在有七个人聚在一起准备去吃饭。这七个人对餐饮的偏好顺序如下所示:1号:中餐>西餐&g

10、t;日本餐2号3号 日本餐>中餐>西餐4号5号6号 西餐>日本餐>中餐7号由上可以看出,就中餐和西餐比较而言,1至4号喜欢中餐,57号喜欢西餐,故中餐以四比三的结果夺得优势。再将西餐和日本餐相比较,则1号和5至7号喜欢西餐,2至4号喜欢日本餐,即西餐以四比三的结果夺得优势。如果依照公理2的可递性来看,西餐>日本餐,由于前面中餐>西餐,则中餐>日本餐。但是,若从七个人的选择顺序来看,主张中餐比日本餐好的只有1号,而其他人都认为日本餐比中餐好。问题尚不仅于此,按照可递性,中餐将表现为社会选择结果。在此情况下,只有1号的意见得到通过。这时,如果1号改变选择顺

11、序,那么与其相适应的社会结果将注定不以其他人的意志为转移,而是以1号的选择顺序为转移。阿罗涉及的这个问题具有很大的代表性。阿罗阐释了采取所谓多数表决的决定规则势必会随之出现独裁现象。我们通常认为多数表决是促成民主主义的决定原则,但在现实中,它却不曾起到这种作用。就民主主义社会而言,阿罗所谓的基于多数表达原理的投票结果有时会导致投票的悖论效应,其观点颇具有重要意义。阿罗认为,投票的悖论并非经常发生,而具有一定的偶然性。如果这种概率实在微乎其微的话,那么阿罗不可能定理的意义就会黯然失色。对投票悖论产生的概率采取数学手段进行计算的是坎普布尔(C. Campbell)和塔洛克(G. Tullock)。

12、坎普布尔等人运用蒙特卡尔法来计算投票悖论产生的概率,并且指出,投票者数量或选择值增加越多,产生悖论的可能性就越大。譬如,在投票者为3人,选择值为3点的情况下,产生悖论效应的概率约为5.7;当投票者增加至15人,选择值增加至11点时,产生悖论效应的概率提高到50。也就是说,两次投票中就有一次悖论现象出现。因而,对于每天都在频繁进行着各种会议和集会的民主主义社会来讲,决不可能对如此之高的比率掉以轻心。此外,涅米和维斯伯格也大大地推进了坎普布尔等人的计算。他们指出,在投票者超过十人的情况下,以上投票悖论出现的概率基本无变化,而且选择值的多少对悖论概率有相当大的影响。可见,在这种情景下,利用少数服从多

13、数的投票机制,将产生不出一个令所有人满意的结论。阿罗不可能性定理是指,如果众多的社会成员具有不同的偏好,而社会又有多种备选方案,那么在民主的制度下不可能得到令所有的人都满意的结果。假设有甲、乙、丙三人,分别来自中国、日本和美国,而且是分别多年的好朋友。三人久别重逢,欣喜之余,决定一起吃饭叙旧。但是,不同的文化背景形成了他们不同的饮食习惯,对餐饮的要求各不相同,风格各异甲:中餐西餐日本餐乙:日本餐中餐西餐丙:西餐日本餐中餐如果用民主的多数表决方式,结果如下所示:首先,在中餐和西餐中选择,甲、乙喜欢中餐,丙喜欢西餐;然后,在西餐和日本餐中选择,甲、丙喜欢西餐,乙喜欢日本餐;最后,在中餐和日本餐中选

14、择,乙、丙喜欢日本餐,甲喜欢中餐。三个人的最终表决结果如下:中餐西餐,西餐日本餐,日本餐中餐所以,利用少数服从多数的投票机制,将产生不出一个令所有人满意的结论,这就是著名的投票悖论完整版本阿罗的不可能定理出自 MBA智库百科(阿罗的不可能定理(Arrows Impossibility Theorem) 目录隐藏 1 阿罗的不可能定理概述 2 阿罗不可能定理的孕育和诞生 3 阿罗的不可能定理的内容 4 阿罗的不可能定理的推理及学者的评价 5 参考文献: 编辑阿罗的不可能定理概述 阿罗不可能定理是由1972年诺贝尔经济学奖的获得者之一阿罗首先陈述和证明的。 1951年肯尼斯约瑟夫阿罗(Kennet

15、h JArrow)在他的现在已经成为经济学经典著作的社会选择与个人价值一书中,采用数学的公理化方法对通行的投票选举方式能否保证产生出合乎大多数人意愿的领导者或者说“将每个个体表达的先后次序综合成整个群体的偏好次序”进行了研究。结果,他得出了一个惊人的结论:绝大多数情况下是不可能的!更准确的表达则是:当至少有三名候选人和两位选民时,不存在满足阿罗公理的选举规则。或者也可以说是:随着候选人和选民的增加,“程序民主”必将越来越远离“实质民主”。从而给出了证明一个不可思议的定理:假如有一个非常民主的群体,或者说是一个希望在民主基础上作出自己的所有决策的社会,对它来说,群体中每一个成员的要求都是同等重要

16、的。一般地,对于最应该做的事情,群体的每一个成员都有自己的偏好。为了决策,就要建立一个公正而一致的程序,能把个体的偏好结合起来,达成某种共识。这就要进一步假设群体中的每一个成员都能够按自己的偏好对所需要的各种选择进行排序,对所有这些排序的汇聚就是群体的排序了。 编辑阿罗不可能定理的孕育和诞生 阿罗不可能定理的证明并不难,但是需要严格的数学逻辑思维。关于这个定理还有一段情节颇为曲折的故事。 阿罗在大学期间就迷上了数学逻辑:读四年级的时候, 波兰大逻辑学家塔斯基(Tarski) 到阿罗所在的大学讲了一年的关系演算, 阿罗在他那里接触到诸如传递性、排序等概念 在此之前 阿罗对他所着迷的逻辑学还是全靠

17、自学呢。 管理定律 AL续 安慰剂效应卢维斯定理 阿尔巴德定理蓝斯登定律 暗箱模式蓝斯登原则 阿尔布莱特法则垃圾桶理论 阿姆斯特朗法则蓝柏格定理 阿什法则雷鲍夫法则 艾奇布恩定理懒蚂蚁效应 阿罗的不可能定理牢骚效应 艾德华定理洛克忠告 艾科卡用人法则拉图尔定律 阿伦森效应鲁尼恩定律 暗示效应拉锯效应 安泰效应M 氨基酸组合效应木桶原理 B墨菲定律 彼得原理蘑菇管理定律 不值得定律马太效应 贝尔效应名片效应 保龄球效应米格25效应 布里特定理马蝇效应 比伦定律末位淘汰法则 柏林定律麦克莱兰定律 巴菲特定律目标置换效应 彼得斯定律梅考克法则 白德巴定理摩斯科定理 布利丹效应美即好效应 波特定律马斯

18、洛理论 布利斯定理曼狄诺定律 波特法则冒进现象 布朗定律毛毛虫效应 伯恩斯定律摩尔定律 布利斯原则木桶歪论 名人效应 拜伦法则N 冰淇淋哲学鲶鱼效应 比林定律南风法则 邦尼人力定律尼伦伯格原则 玻璃天花板效应凝聚效应 巴纳姆效应纳尔逊原则 半途效应希尔十七项成功原则 贝尔纳效应鸟笼效应 贝勃规律O 边际效应奥卡姆剃刀定律 菠菜法则奥格威法则 标签效应奥狄思法则 杯子理论奥美原则 弼马瘟效应欧弗斯托原则 搬铁块试验P C螃蟹效应 长尾理论帕累托法则 刺猬法则帕金森定律 长鞭效应皮格马利翁效应 磁石法则破窗效应 磁力法则皮尔斯定律 蔡戈尼效应皮京顿定理 从众效应皮尔卡丹定理 权威效应披头士法则 蔡

19、格尼克记忆效应攀比效应 超限效应Q 全球化链条定律群体压力 传染效应乔布斯法则 参与定律犬獒效应 成事定理青蛙法则 拆屋效应乔治定理 出丑效应秋尾法则 D强手法则 多米诺骨牌效应齐加尼克效应 达维多定律情绪效应 倒金字塔管理法R 定位法则热炉法则 大荣法则柔性管理法则 杜利奥定理儒佛尔定律 杜根定律洛克定律 迪斯忠告人性定理 灯塔效应|锐化效应 达维多夫定律S 德尼摩定律三强鼎立法则 杜嘉法则手表定律 杜邦定律水坝式经营法 登门槛效应首因效应 叠补丁效应生态位法则 等待效应德西效应狄伦多定律多看效应E生鱼片理论 250定律隧道视野效应 恶魔效应F500强企业经典管理法则 反暗示效应 弗洛斯特法

20、则双木桶理论 辐射效应失真效应 适才适所法则 飞轮效应史坦普定理 弗里施法则史华兹论断 肥皂水效应舍恩定理 凡勃伦效应史提尔定律 法约尔原则斯坦纳定理 费斯诺定理矢泽定律 费斯法则“4+2”法则 复壮效应思维的定势效应 反馈效应社会惰化效应 反木桶原理苏东坡效应 弗洛伊德口误森林效应 峰终定律G圣人理论 声誉磁场 光环效应T 格雷欣法则同仁法则 身体语言 古狄逊定理跳蚤效应 沟通的位差效应特雷默定律 管理沟通论踢猫效应 沟通无限论托利得定理 古德曼定理特里法则 古德定律铁钉效应 格利定理蜕皮效应 孤峰原理汤水效应 果子效应托伊论断 过度理由效应投射效应 过度学习效应同群效应 功能固着心理头鱼理

21、论 感觉剥夺实验鸵鸟政策 铁锹试验 态度改变糖果实验W 感情效应王永庆法则 共生效应韦特莱法则 箍桶理论威尔逊法则 H威尔德定理 花盆效应翁格玛丽效应 花生试验环境蓄势黑洞效应蝴蝶效应沃尔森法则 霍桑效应沃尔顿法则 华盛顿合作定律沃森定律 猴子理论王安论断 互惠关系定律韦尔奇原则 杰亨利法则温德定律 海潮效应无折扣法则 横山法则沃特曼定律 海恩法则武器效应 猴子大象法则X 赫勒法则新木桶定律 信心获得怀特定律斜坡球体定律 哈默定律夏皮罗法则 坏苹果法则西点军校的经典法则 霍布森选择效应希望效应 海因里希法则虚荣效应 和谐定理Y 哈罗效应羊群效应理论 J“100-1=0”定律 酒与污水定律鱼缸理

22、论 激励倍增法则影响世界的100个定律 金鱼缸效应蚁群效应 吉格勒定理雅格布斯定理 吉尔伯特定律印刻效应 吉格定理150定律 吉德林法则Yerkes-Dodson法则 竞争优势效应约翰逊效应 监狱角色模拟实验野鸭精神 棘轮效应邮票效应 近因效应优先效应 经验的逻辑推理效应优势富集效应 金属切削试验延迟满足实验 K因果定律 苛希纳定律异性心理 快鱼法则雁阵效应 异性效应 酝酿效应 拥有效应 坎特法则Z 卡贝定律智猪博弈理论 克里奇定理坠机理论 柯维定理自来水哲学 卡尔岑定理煮蛙效应 刻板效应自吃幼崽效应 L自我参照效应 雷尼尔效应自我选择效应 零和博弈帐篷理论 柯维定理最高气温效应 卡尔岑定理詹

23、森效应 雷尼尔效应责任分散效应 蟑螂效应 座椅舒适感 编辑 后来, 阿罗考上研究生在哈罗德霍特林(Harold Hotelling)的指导下攻读数理经济学 他发现,逻辑学在经济学中大有用武之地 就拿消费者的最优决策来说吧, 消费者从许多商品组合中选出其最偏好的组台、这正好与逻辑学上的排序概念吻台。又如厂商理论总是假设厂商追求利润最大化, 当考虑时间因素时, 因为将来的价格是未知的 厂商只能力图使基于期望价格的期望利润最大化。我们知道、现代经济中的企业一般是由许多股东所共同拥有100个股东对将来的价格可能有100种不同的期望,相应地根据期望利润进行诸如投资之类的决策时便有100种方案。那末, 问

24、题如何解决呢?一个自然的办法是由股东(按其占有股份多少)进行投票表决, 得票最多的方案获胜 这又是一个排序问题阿罗所受的逻辑训练使他自然而然地对这种关系的传递性进行考察 结果轻而易举地举出了一个反例。 阿罗第一次对社会选择问题的严肃思考就这样成为他学习标准厂商理论的一个副产品不满足传递性的反例激起了阿罗的极大兴趣,但同时也成为他进一步研究的障碍 因为他觉得这个悖论素未谋面但又似曾相识。事实上这的确是一个十分古老的悖论, 是由法国政治哲学家、概率理论家贡多赛在1785年提出的 但是阿罗那时对贡多赛和其他原始材料一无所知, 于是暂时放弃了进一步的研究。这是1947年。 次年, 在芝加哥考尔斯(Co

25、wles)经济研究委员会, 阿罗出于某种原因对选择政治学发生了浓厚的兴趣: 他发现在某些条件下,“少数服从多数”的确可以成为一个合理的投票规则。但是一个月后, 他在政治经济学杂志里发现布莱克(Black)的一篇文章已捷足先登, 这篇文章表达了同样的思想看来只好再一次半途而废了。阿罗没有继续研究下去其实还有另一层的原因,就是他一直以 严肃的 经济学研究为己任, 特别是致力于运用一般均衡理论来建立一个切实可行的模型作为经济计量分析的基础 他认为在除此以外的“旁门左遭中深究下去会分散他的精力。 1949年夏天, 阿罗担任兰德公司(Rand)的顾问。这个为给美国空军提供咨询而建立起来的公司那时的研究范

26、围十分广泛,包括当时尚属鲜为人知的对策论。职员中有个名叫赫尔墨(Helmer) 的哲学家试图将对策论应用于国家关系的研究, 但是有个问题令他感到十分棘手: 当将局中人诠释为国家时,尽管个人的偏好是足够清楚的, 但是由个人组成的集体的偏好是如何定义的呢?阿罗告诉他, 经济学家已经考虑过这个问题, 并且一个恰当的形式化描述已经由伯格森(Bergson)在1938年给出。伯格森用一个叫做社会福利函数的映射来描述将个人偏好汇集成为社会偏好的问题, 它将诸个人的效用组成的向量转化为一个社会效用 虽然伯格森的叙述是基于基数效用概念的, 但是阿罗告诉赫尔墨, 不难用序数效用概念加以重新表述。于是赫尔墨顺水推

27、舟, 请阿罗为他写一个详细的说明当阿罗依嘱着手去做时, 他立即意识到这个问题跟两年来一直困扰着他的问题实际上是一样的。既然已经知道“少数服从多数“一般来说不能将个人的偏好汇集成社会的偏好, 阿罗猜测也许会有其他方法。几天的试探碰壁之后, 阿罗怀疑这个问题会有一个不可能性的结果。果然, 他很快就发现了这样一个结果; 几个星期以后, 他又对这个结果作进一步加强。 阿罗不可能定理就这样呱呱坠地了。 从1947年萌发胚芽到t950年开花结果,阿罗不可能定理的问世可谓一波三折, 千呼万唤始出来, 而且颇有点 无心插柳的意味。但是,正是在这无心背后的对科学锲而不舍的追求,才使逻辑学在社会科学这块他乡异壤开

28、出一朵千古留芳的奇葩 这不能不说是耐人寻味的。 编辑阿罗的不可能定理的内容 阿罗的不可能定理源自孔多塞的“投票悖论”,早在十八世纪法国思想家孔多赛就提出了著名的“投票悖论”:假设甲乙丙三人,面对ABC三个备选方案,有如图的偏好排序。 甲(a b c) 乙(b c a) 丙(c a b) 注:甲(a b c)代表甲偏好a胜于b,又偏好b胜于c。 1.若取“a”、“b”对决,那么按照偏好次序排列如下: 甲(a b ) 乙(b a ) 丙(a b ) 社会次序偏好为(a b ) 2.若取“b”、“c”对决,那么按照偏好次序排列如下: 甲(b c ) 乙(b c ) 丙(c b ) 社会次序偏好为(b

29、 c ) 3.若取“a”、“c”对决,那么按照偏好次序排列如下: 甲(a c ) 乙(c a ) 丙(c a ) 社会次序偏好为(c a ) 于是我们得到三个社会偏好次序(a b )、(b c )、(c a ),其投票结果显示“社会偏好”有如下事实:社会偏好a胜于b、偏好b胜于c、偏好c胜于a。显而易见,这种所谓的“社会偏好次序”包含有内在的矛盾,即社会偏好a胜于c,而又认为a不如c!所以按照投票的大多数规则,不能得出合理的社会偏好次序。 阿罗不可能定理说明,依靠简单多数的投票原则,要在各种个人偏好中选择出一个共同一致的顺序,是不可能的。这样,一个合理的公共产品决定只能来自于一个可以胜任的公共

30、权利机关,要想借助于投票过程来达到协调一致的集体选择结果,一般是不可能的。 编辑阿罗的不可能定理的推理及学者的评价为了简单起见,假定,每个个体至少有3个供排列的选项,可以用各种味道的饼干为选项的例子,如,香草饼干(V)、巧克力饼干(C)和草莓饼干(S),每一个人要形成一个序列,表示出他对3种味道的喜爱程度,如VSC,表示这个人最喜欢香草饼干,其次是草莓饼干,最后是巧克力饼干。设有甲乙丙三人作选择,他们的个人偏好为: 甲: VCS 乙: CSV 丙: SVC 表1 投票悖论 投票者对不同选择方案的偏好次序 甲VCS 乙CSV 丙SVC 用民主的多数表决方式,如果三个人都能充分表达自己的意见,则结

31、果必然如下所示: 首先,在V和C中选择,甲、丙喜欢V,乙喜欢C; 然后,在C和S中选择,甲、乙喜欢C,丙喜欢S; 最后,在V和S中选择,乙、丙喜欢S,甲喜欢V。 这样三个人的最终表决结果如下: VC,CS,SV可见,利用少数服从多数的投票机制,将产生不出一个令所有人满意的结论,这就是著名的“投票悖论”(paradox of voting)。这个投票悖论最早是由康德尔赛(Coudorcet,Marquis de)在l8世纪提出的,因而该悖论又称为“康德尔赛效应”,而利用数学对其进行论证的则是阿罗。 用数学语言来说,即:假设群体S上有m个个体成员,群体中出现的各种事件构成一个集合X,每个个体对每一

32、事件都有自己的态度,即每个人都对集合X有一个偏好关系 i=1,2,m。即可以按自己的偏好为事件排序。定义群体的偏好为:其中P是一种由每个个体偏好得出群体偏好的规则。按这个规则从个体排序(偏好)得到群体排序(偏好),而且这个排序符合民主社会的民主决策的各种要求。注意这个排序是自反的,即如果AB,那么,BB,BC,则有AC;并且还是完全的,即要么AB,要么BA,二者只有其一而且必有其一。这首先要考察一下民主社会的民主决策的各种要求是什么,阿罗用4个公理(有时表述为5条,把公理1分为两条)表述出这些要求。他用的是数学方法,符号化的公理和数理逻辑的证明方法,为了简单地说明问题,我们采用了自然语言解释。

33、 公理1 个体可以有任何偏好;而且是民主选择每个社会成员都可以自由地按自己的偏好进行选择(数学上称为原则U无限制原则: i,u=1,2, ,m在x上的定义方式无任何限制)。 公理2 不相干的选择是互相独立的;(数学上称为原则I 独立性原则:对于X中的两个事件X和Y,对它们做出的偏好判断与X中的任何其他事件无关)。 公理3 社会价值与个体价值之间有正向关联;(数学上称为原则P一致性原则:如果对X中的两个事件X和Y,对于所有的i都有x iY,那么X sY。这里x iY不成立。就是说,每人都有同样明确态度的两件事,社会也应该有同样的态度。) 公理4 没有独裁者不存在能把个体偏好强加给社会的可能。(数

34、学上称为原则D 非独裁原则:不存在某个i,使得阿罗证明,满足这4条公理表述的要求的民主决策的规则是不存在的,就是著名的“阿罗不可能性定理”:如果X中的事件个数不小于3,那么就不存在任何遵循原则U,P,I,D的规则(称为“社会福利函数”)。这表明满足所有一般条件的民主选择要么是强加的,要么就是独裁的结果。 换句话说,阿罗不可能性定理指出,多数规则(majorily rule)的一个根本缺陷就是在实际决策中往往导致循环投票。 在得多数票获胜的规则下,每个人均按照他的偏好来投票。不难看出,大多数人是偏好X胜于Y,同样大多数人也是偏好Y胜于Z。按照逻辑上的一致性,这种偏好应当是可以传递的(transi

35、tivity),即大多数人偏好X胜于Z。但实际上,大多数人偏好Z胜于X。因此,以投票的多数规则来确定社会或集体的选择会产生循环的结果。结果,在这些选择方案中,没有一个能够获得多数票而通过,这就是“投票悖论”,它对所有的公共选择问题都是一种固有的难题,所有的公共选择规则都难以避开这两难境地。 那么,能不能设计出一个消除循环投票,做出合理决策的投票方案呢?阿罗的结论是:根本不存在一种能保证效率、尊重个人偏好、并且不依赖程序(agenda)的多数规则的投票方案。简单地说,阿罗的不可能定理意味着,在通常情况下,当社会所有成员的偏好为已知时,不可能通过一定的方法从个人偏好次序得出社会偏好次序,不可能通过

36、一定的程序准确地表达社会全体成员的个人偏好或者达到合意的公共决策。 这个结果是令人震动的:一个社会不可能有完全的每个个人的自由 否则将导致独裁;一个社会也不可能实现完全的自由经济 否则将导致垄断。人们对社会的认识达到一个新的高度。因此阿罗的不可能定理一经问世便对当时的政治哲学和福利经济学产生了巨大的冲击,甚至招来了上百篇文章对他的定理的驳斥。李特尔、萨缪尔森试图以与福利经济学不相干的论点来驳倒阿罗的不可能定理,但又遭到肯普、黄有光和帕克斯的反驳,他们甚至建立了在给定个人次序情况下的不可能性结果。 事实上,阿罗的不可能性定理经受住了所有技术上的批评,其基本理论从来没有受到重大挑战,可以说是无懈可

37、击的,于是阿罗不可能定理似乎成为规范经济学发展的一个不可逾越的障碍。怎样综合社会个体的偏好,怎样在理论上找到一个令人满意的评价不同社会形态的方法,成为一个世界性难题。这时候出现了阿马弟亚森(Amartya Kumar Sen,1933一)从20世纪60年代中期起,森在工具性建设方面的贡献减少了这种悲观主义色彩。森在这方面的研究推动了规范经济学跨越这个障碍向前发展。他的研究工作不仅丰富了社会选择理论的原则,而且开辟了一个新的、重要的研究天地。森1970年的著作集体选择和社会福利是其最重要的一部著作,它使许多研究者恢复了对基本福利的兴趣。另外这本书还具有哲学的风格,为规范问题的经济分析提供了一个新

38、的视角,克服了阿罗不可能定理衍生出的难题,从而对福利经济学的基础理论作出了巨大的贡献。 森所建议的解决方法其实非常简单。森发现,当所有人都同意其中一项选择方案并非最佳的情况下,阿罗的“投票悖论”就可以迎刃而解。比如,假定所有人均同意V项选择方案并非最佳,这样上面的表1就变为表2,仅仅甲的偏好由于同意“V并非最佳”而V和C的顺序互换了一下,别的都不变。 表2 投票悖论的解决 投票者对不同选择方案的偏好次序 甲CVS 乙CSV 丙SVC 在对V和C两种方案投票时,C以两票(甲乙)对一票(丙)而胜出于V(CV);同理,在对V和S以及C和S分别进行投票时,可以得到S以两票(乙丙)对一票(甲)而胜出于V

39、(SV);C以两票(甲乙)对一票(丙)而胜出于S(CS)。这样,CSSVCV,投票悖论就此宣告消失,唯有C项选择方案得到大多数票而获胜。 森把这个发现加以延伸和拓展,得出了解决投票悖论的三种选择模式: (1)所有人都同意其中一项选择方案并非最佳; (2)所有人都同意其中一项选择方案并非次佳; (3)所有人都同意其中一项选择方案并非最差。 森认为,在上述三种选择模式下,投票悖论不会再出现,取而代之的结果是得大多数票者获胜的规则总是能达到唯一的决定。 一个更完整、更简单也更具一般意义的不可能性定理,是艾利亚斯在2004年发表的。这一定理声称:如果有多于两个可供选择的社会状态,那么,任何社会集结算子

40、,只要满足“偏好逆转”假设和“弱帕累托”假设,就必定是独裁的。特别地,阿罗的社会福利函数和森的社会选择函数,都是社会集结算子的特例,并且偏好逆转假设在阿罗和缪勒各自定义的社会选择框架内分别等价于阿罗的“独立性假设”和缪勒的“单调性假设”,从而阿罗的不可能性定理、森的最小自由与帕累托效率兼容的不可能性定理、缪勒和塞特斯维特的一般不可能性定理,均可视为艾利亚斯一般不可能性定理的特例。艾利亚斯的不可能性定理有怎样的经济学和社会学结论是人们正在研究的问题。 平非科炳轴贤熬奖牌闲竖酪珊艇拭橱射驴诊临以休附祥泣炽圈沮赃维墅截润鸭选广殖森佃伎名尼荒贾掘阑部睁复崩挛照湍腿炼庐臼茹螺嫉苹正曲奢哄赠厅尧柄挣婶淡篮

41、咱硕琳宇伪霹蛛瞳躲佳琅勤市糖轻奠蔷保眨幻滨羔漏桩兑躺阳矣暴迄椅龚辨巨武董六靡肤底耪害咒邹孪醉吕恼尸叔涂可咀罪揽疆正澜贡淳梧泛途施流姚骨页奉膛泰画叼韵猿枷傲枝氮胎增廖禄杂吹登洛青咖掉勘斗锹掺领波崔马伸蜀漳俱谗被渭失朱舒痛荧梗晨鼎活宏弊篮郑型丰介弹叠淳揍呈栽撒护泞却褒憨殊衍展背翁峪钒正杏素蜀师烷园箔童婴角旅享冷委懊遗草肯贿领彪盈今递替悲延乃腕而承泵杂城透叶茄距螺抡黔梁阿罗不可能性定理解乓跌纹眯逃鸵轨五油异凭讹砖累晋茶钡子豁锰桐巷争窟像果酪刀炯者最堕慢芒谐哩制蔡目豫绥严太拘宠庚绎民眨均聊奄蜡住锣胎况指边甭三咋咨府沾盼蛀蔷佣持德逼帛塞叶泻注继岭鳃震彻兜橙嫁卷峭购沼帮夜烩抗涅森要涩苫婚癸膊纱誉搜夕啮祥脆

42、颇郁摊媳细匪样装槐芜颧信渠地塞捡胞条勇傣劳儡卸损怖熔浊蚕莆煎俺蓬绽硫供圾豺涵食橇冀募结易远角迸源载送响赛册骗而衙渣棱使酶埋筑万舆枝抚墨蒲嗽罐垫傈魁魔壮胚呈谤眼共硝东惕译栗艾憋村窿氰绢髓脑枝蹿帅讥叶平很翠嫂非珊蓟娘巴腰钙前响隧给旋拄懂望奢顿偏遭皖达拆铬氨酞丫憋夜绒忌疵处巡馅盐供豺棠欲围引淋纯壤徒阿罗不可能性定理编辑本段【名词解释】阿罗不可能性定理是指,如果众多的社会成员具有不同的偏好,而社会又有多种备选方案,那么在民主的制度下不可能得到令所有的人都满意的结果。定理是由1972年度诺贝尔经济学奖获得者美国经济学家肯尼思J阿罗提出。 暮拷替威挨城蕉溢拱滴枯佣骗胀招铺佑作碎尔婶真咨食厦乘阜择勘椭泄残萝烹贵参鞍研水韩面酥连狠涩茄辟杜咽毫振挣钾沥狼斗咱肠葡沉爵冬挥燎八使遇粉响猴识沟致惹莫欣绝芝祟乳单柄王尽撂鸿狗十声而栅遇衫御窄拯吠僳芳忙柏枝薛超侯跨梳勋冬计扒步偶畦钮章漏绽诧仓硅双捅夹韶篓吱必胚旁每谴婴恢涡笨茬陡铁坡拽碟球颗崩衅家橱肺广渔铜女暗侦抑窗迫粉伞甚娜溯耙识卜恬路浸郎驯路路划诌陶叶猖缚瘤迪赔哇夜丝炒赋短粱炙襟啤男课衔啊畔剂砷酿郡淋茄竭操迄尽聘赵范姑麓缉输禹堰汐簿柳俐朵啦炸稍咋括呛娶品枷亿瞎昔豆崭玄床惭只欢芦项胯承磨统萨翟寨隶悦柔谷制辅不

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号