《实际问题与二次函数》利润问题.ppt

上传人:牧羊曲112 文档编号:5027671 上传时间:2023-05-30 格式:PPT 页数:34 大小:1.16MB
返回 下载 相关 举报
《实际问题与二次函数》利润问题.ppt_第1页
第1页 / 共34页
《实际问题与二次函数》利润问题.ppt_第2页
第2页 / 共34页
《实际问题与二次函数》利润问题.ppt_第3页
第3页 / 共34页
《实际问题与二次函数》利润问题.ppt_第4页
第4页 / 共34页
《实际问题与二次函数》利润问题.ppt_第5页
第5页 / 共34页
点击查看更多>>
资源描述

《《实际问题与二次函数》利润问题.ppt》由会员分享,可在线阅读,更多相关《《实际问题与二次函数》利润问题.ppt(34页珍藏版)》请在三一办公上搜索。

1、2.二次函数y=ax2+bx+c的图象是一条,它的对称轴是,顶点坐标是.当a0时,抛物线开口向,有最 点,函数有最 值,是;当 a0时,抛物线开口向,有最 点,函数有最 值,是。,抛物线,上,小,下,大,高,低,1.二次函数y=a(x-h)2+k的图象是一条,它的对称轴是,顶点坐标是.,抛物线,直线x=h,(h,k),基础扫描,3.二次函数y=2(x-3)2+5的对称轴是,顶点坐标是。当x=时,y的最 值是。4.二次函数y=-3(x+4)2-1的对称轴是,顶点坐标是。当x=时,函数有最 值,是。5.二次函数y=2x2-8x+9的对称轴是,顶点坐标是.当x=时,函数有最 值,是。,直线x=3,(

2、3,5),3,小,5,直线x=-4,(-4,-1),-4,大,-1,直线x=2,(2,1),2,小,1,基础扫描,在日常生活中存在着许许多多的与数学知识有关的实际问题。如繁华的商业城中很多人在买卖东西。,如果你去买商品,你会选买哪一家的?如果你是商场经理,如何定价才能使商场获得最大利润呢?,26.3 实际问题与二次函数,-利润问题,利润问题,一.几个量之间的关系.,2.利润、售价、进价的关系:,利润=,售价进价,1.总价、单价、数量的关系:,总价=,单价数量,3.总利润、单件利润、数量的关系:,总利润=,单件利润数量,二.在商品销售中,采用哪些方法增加利润?,教学目标知识技能:进一步运用二次函

3、数的概念解决实际问题。数学思考:在运用二次函数解决实际问题中的最大利润问 题的过程中,进一步体会数学建模思想,培养 学生的数学应用意识。解决问题:经历“实际问题建立模型拓展应用”的过 程,发展学生分析问题、解决问题的能力。情感态度:运用二次函数解决实际问题的过程中,体验 数学的实用性,提高学习数学的兴趣。,教学重难点教学重点:运用二次函数的意义和性质解决实际 问题。教学难点:运用二次例函数的思想方法分析解决实 际问题,在解决实际问题的过程中进一 步巩固二次函数的性质。,问题1.已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调整价格,每涨价1元,每星期

4、要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?,分析:没调价之前商场一周的利润为 元;设销售单价上调了x元,那么每件商品的利润可表示为 元,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程。,6000,(20+x),(300-10 x),(20+x)(300-10 x),(20+x)(300-10 x)=6090,自主探究,已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?,若设销售单价x元,那么每件商品的利润可表示

5、为 元,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程.,(x-40),300-10(x-60),(x-40)300-10(x-60),(x-40)300-10(x-60)=6090,问题2.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?,合作交流,解:设每件涨价为x元时获得的总利润为y元.,y=(60-40+x)(300-10 x)=(20+x)(300-10 x)=-10 x2+100 x+6000=-10(x2-10 x)+60

6、00=-10(x-5)2-25+6000=-10(x-5)2+6250,当x=5时,y的最大值是6250.,定价:60+5=65(元),(0 x30),怎样确定x的取值范围,问题3.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每降价一元,每星期可多卖出20件。如何定价才能使利润最大?,解:设每件降价x元时的总利润为y元.,y=(60-40-x)(300+20 x)=(20-x)(300+20 x)=-20 x2+100 x+6000=-20(x2-5x-300)=-20(x-2.5)2+6125(0 x20)所以定价为60-2.5=57

7、.5时利润最大,最大值为6125元.,怎样确定x的取值范围,问题4.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?,由(2)(3)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?,答:综合以上两种情况,定价为65元时可获得最大利润为6250元.,小结:,1.当不改变价格时,每星期可获利润6000元.,2.若降价,每件服装降价2.5元时,即定价为57.5元时,所获利润最大,这时,最大利润为6125元.,3.若涨价,每件服装涨5元时.即定价

8、为65元时,获得利润最大,这时最大利润为6250元.,综上所述,当每件服装涨价5元时,获利润最大.,1.商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在半个月内获得最大利润?,解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20 x)=-20 x2+200 x+4000=-20(x-5)2+4500 当x=5时,y最大=4500 答:当售价提高5元时,半月内可获最大利润4500元,牛刀小试,1.某果园有100棵橙子

9、树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.增种多少棵橙子树时,总产量最大?,如果设果园增种x棵橙子树,总产量为y个,则,设销售价为x元(x13.5元),利润是y元,则,2.某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与单价满足如下关系:在一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.当销售单价为多少元时,可以获得最大利润,最大利润是多少元?,3.某商店购进一批单价为20元的日用品,如果以单

10、价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?,设销售价为x元(x30元),利润为y元,则,6.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元70元之间.市场调查发现:若每箱发50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.,(1)写出售价x(元/箱)与每天所得利润w(元)之间的函数关系式;(2)每箱定价多少元时,才能使平均每天的利润最大?最大利润是多少?,设旅行团人数为x人,营业

11、额为y元,则,7.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?,旅馆有50个房间,每个房间定价为180元/天,房间会全部住满,若每个房间每天定价每增加10元时,就会有一个房间空闲,问:房价定为多少元?旅馆的营业额最大?,变:旅馆有50个房间,每个房间定价为180元/天,房间会全部住满,若每个房间每天定价每增加10元时,就会有一个房间空闲,如果旅馆需对每个房间每天支出20元各种费用,则房价定为多少元?旅馆的营业额最大?,总利润=每个房间定价住

12、房数量,总利润=每个房间定价住房数量-支出费用,y=(50-x/10)(180+x)-20(50-x/10),y=-1/10 x2+34x+8000,有一经销商,按市场价收购了一种活蟹1000千克,放养在塘内,此时市场价为每千克30元。据测算,此后每千克活蟹的市场价,每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元(放养期间蟹的重量不变).设x天后每千克活蟹市场价为P元,写出P关于x的函数关系式.如果放养x天将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q关于x的函数关系式。该经销商将这批蟹放养多少天

13、后出售,可获最大利润,(利润=销售总额-收购成本-费用)?最大利润是多少?,思考,解:由题意知:P=30+x.由题意知:死蟹的销售额为200 x元,活蟹的销售额为(30+x)(1000-10 x)元。,驶向胜利的彼岸,Q=(30+x)(1000-10 x)+200 x=-10 x2+900 x+30000,设总利润为W=Q-30000-400 x=-10 x2+500 x=-10(x-25)2+6250当x=25时,总利润最大,最大利润为6250元。,(2)如果商场要想每天获得最大利润,每件商品的售价定为多少最合适?最大销售利润为多少?,3.某商场购进一批单价为16元的日用品,销售一段时间后,

14、为了获得更多的利润,商店决定提高销售价格,经试验发现,若按每件24元的价格销售时,每月能卖240件,若按每件30元的价格销售时,每月能卖60件。若每月销售件数y(件)与价格x(元/件)满足y=kx+b,(1)确定k与b的值,并指出x的取值范围;(2)为了使每月获得利润为1440元,问商品应定价为每件多少元?(3)为了获得最大的利润,商品应定为每件多少元?,5.某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天的销售量t(件)与每件的销售价x(元/件)可看成是一次函数关系:t3x204。(1).写出商场卖这种服装每天销售利润 y(元)与每件的销售价x(元)间的函 数关系式;(2).通

15、过对所得函数关系式进行配方,指出 商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适?最大利润为多少?,若日销售量 y 是销售价 x 的一次函数。(1)求出日销售量 y(件)与销售价 x(元)的函数关系式;(6分)(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?(6分),1某产品每件成本10元,试销阶段每件产品的销售价 x(元)与产品的日销售量 y(件)之间的关系如下表:,中考题选练,(2)设每件产品的销售价应定为 x 元,所获销售利润为 w 元。则,产品的销售价应定为25元,此时每日获得最大销售利润为225元。,则,解得:k=1,b40。,1分

16、,5分,6分,7分,10分,12分,(1)设此一次函数解析式为。,所以一次函数解析为。,2.(09中考)某超市经销一种销售成本为每件40元的商品据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件设销售单价为x元(x50),一周的销售量为y件,(1)写出y与x的函数关系式(标明x的取值范围),(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?,(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?,中考链接,反思感悟,通过本节课的学习,我的收获是?,归纳小结:,运用二次函数的性质求实际问题的最大值和最小值的一般步骤:,求出函数解析式和自变量的取值范围,配方变形,或利用公式求它的最大值或最小值。,检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内。,解这类题目的一般步骤,课堂寄语,二次函数是一类最优化问题的数学模型,能指导我们解决生活中的实际问题,同学们,认真学习数学吧,因为数学来源于生活,更能优化我们的生活。,谢 谢,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号