《用二分法求方程的近似解(75).ppt》由会员分享,可在线阅读,更多相关《用二分法求方程的近似解(75).ppt(17页珍藏版)》请在三一办公上搜索。
1、,2023年6月30日星期五,3.1.2 用二分法求方程的近似解,;,有六个乒乓球,已知其中五个球质量相同,只有一个球的质量偏重,而手边只有一架没有砝码的托盘天平.你能利用这架天平找出这个质量偏重的球吗?,问题情境,问题1:最少要称重几次才能找到这个质量偏重 的乒乓球?,答案:最少两次,CCTV2“幸运52”片段:主持人李咏说道:猜一猜这架家用型数码相机的价格.观众甲:2000!李咏:高了!观众乙:1000!李咏:低了!观众丙:1500!李咏:还是低了!,问题2:你知道这件商品的价格在什么范围内吗?,问题3:若接下来让你猜的话,你会猜多少价格比较合理呢?,答案:1500至2000之间,问题情境
2、,1.如何求方程的解:x2-2x-1=0,提出问题:,2.若不用求根公式能否求出近似解?,X=(x=2.4142或-0.4142),3.借助图像,4.能否使解更精确?,2,3,2.5,2.375,2.25,2.4375,“取区间中点”,区间a,b中点c=,分析:如何求方程 x2-2x-1=0 的一个正的近似解.(精确度0.05),方法探究,f(2)0 2x13,f(2)0 2x12.5,f(2.25)0 2.25x12.5,f(2.375)0 2.375x12.5,f(2.375)0 2.375x12.4375,f(2.40625)0 2.40625x12.4375,X=|2.4375-2.4
3、0625|=0.031250.05,二分法定义:对于区间a,b上连续不断、且f(a)f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。,2.用二分法求一元方程f(x)=0的近似解的基本步骤:,第一步 确定初始区间a,b,验证f(a)f(b)0,第二步 求区间a,b两端点的平均值,第三步 计算f(c)并判断:,(1)如果f(c)=0,则c就是f(x)的零点,计算终止;,(2)如果f(a)f(c)0,则零点,否则零点。,第四步 重复步骤23,直至所得区间的两端点差的绝对值小于要求的精确值,则零点的近似值
4、为所得区间内的任一数。,二分法的基本步骤,一般取其中点为近似值。,自行探究:例2.求函数f(x)=x+2x-6的零点.(精确度为0.01),列表:,求函数 在区间(2,3)内的零点.(精确度0.01),(2,3),-,+,2.5,-0.084,(2.5,3),-,+,2.75,0.512,(2.5,2.75),-,+,0.215,(2.5,2.625),-,+,2.625,2.5625,0.066,(2.5,2.5625),-,+,2.53125,-0.009,(2.53125,2.5625),-,+,2.546875,0.029,(2.53125,2.546875),-,+,2.539062
5、5,0.010,(2.53125,2.5390625),-,+,练习:,1.下列函数图像与x轴均有交点,但不宜用二分法求交点横坐标的是(),A,B,C,D,B,练习,2.函数f(x)=x3-2x2+3x-6在区间-2,4上的零点必定在()内 其中f(1.75)0(A)-2,1(B)2.5,4(C)1,1.75(D)1.75,2.5,D,例3.从上海到旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至多需要检查接点的个数为几个?,答:至多检查3个接点.,二分法的应用,练习1.用二分法求函数的零点,函数的零点总位于区间an,bn上,当 时函数的近似零点与真
6、正零点的误差不超过()A.m B.m/2 C.2m D.m/4,B,取中点为近似零点,真正的零点,二分法的应用,练习2.在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障,这一条10km长的线路,如何迅速查出故障所在?,要把故障可能发生的范围缩小到50100m左右,即一两根电线杆附近,要检查多少次?,算一算:,答:7次,答:用二分法,第2次:1000022=2500,第1次:100002=5000,第3次:1000023=1250,第4次:1000024=625,第5次:1000025=312.5,第6次:1000026=156.25,第7次:1000027=78.125,二分法的应用,小结,二分法是求函数零点近似解的一种计算方法.用二分法求函数零点的一般步骤:(1)零点存在性定理,求出初始区间;(2)进行计算,确定下一区间(3)循环进行,达到精确要求,二分法渗透了极限和算法的思想.,