养分的运输与分配 .ppt

上传人:sccc 文档编号:5671869 上传时间:2023-08-08 格式:PPT 页数:53 大小:8.71MB
返回 下载 相关 举报
养分的运输与分配 .ppt_第1页
第1页 / 共53页
养分的运输与分配 .ppt_第2页
第2页 / 共53页
养分的运输与分配 .ppt_第3页
第3页 / 共53页
养分的运输与分配 .ppt_第4页
第4页 / 共53页
养分的运输与分配 .ppt_第5页
第5页 / 共53页
点击查看更多>>
资源描述

《养分的运输与分配 .ppt》由会员分享,可在线阅读,更多相关《养分的运输与分配 .ppt(53页珍藏版)》请在三一办公上搜索。

1、第四章 养分在植物体内的运输和分配,主要内容 基本要求养分的短距离运输了解养分的长距离运输了解植物体内养分的循环了解养分的再利用了解,第一节 养分的短距离运输,含义:也称横向运输,是指介质中的养分沿根表皮、皮层、内皮层到达中柱(导管)的迁移过程。由于其迁移距离短,故称为短距离运输。,一、养分的运输途径,离子短距离运输的质外体(A)和共质体(B)示意图,一、养分的运输途径(一)质外体途径1.运输部位:根尖的分生区和伸长区由于内皮层还未充分分化,凯氏带尚未形成,质外体可延续到木质部,即养分可直接通过质外体进入木质部导管。2.运输方式:自由扩散、静电吸引3.运输的养分种类:Ca2+、Mg 2+、Na

2、+等如Ca2+,主要通过质外体运输,只有少量进入细胞内,因为:质外体中的 Ca2+果胶果胶酸钙细胞内的 Ca2+草酸草酸钙所以:钙的运输受到限制,(二)共质体途径1.运输部位:根毛区内皮层已充分分化,凯氏带已形成,养分进入共质体(细胞内)后,靠胞间连丝在相邻的细胞间进行运输,最后向中柱转运2.方式:扩散作用、原生质流动(环流)、水流带动3.运输的离子:NO3、H2PO4、K、SO42、Cl根毛细胞是贮存磷、钾的生理库,如禾谷类作物生长前期吸收的磷占全量的6070,到后期经转运和再利用。4.具有自我调节作用:共质体内被运输的离子并不完全进入导管,除一部分在根内被利用和同化外,还要优先被液泡选择吸

3、收而积累在液泡的“离子库”中。当通过共质体运输的离子暂时减少时,液泡又释放离子,使之通过运输到达导管。,二、养分进入木质部是指养分从中柱薄壁细胞向木质部导管的转移过程。实际上是离子自共质体向质外体的过渡过程。(一)养分进入机理早期认为是被动过程渗漏假说:认为共质体中的离子跨越皮层组织,穿过内皮层细胞后渗漏进入木质部导管。后来证明是主动过程双泵模型:认为离子进入木质部导管需经两次泵的作用:第一次是将离子由介质或自由空间主动泵入细胞膜内,进入共质体;第二次是将离子由木质部薄壁细胞主动泵入木质部导管,进入质外体。,根部离子短距离运输进入木质部导管的双泵模型 共质体 质外体,2,(二)影响因素1.外界

4、离子浓度介质K浓度对向日葵伤流液中含钾量的影响介质K浓度(mmol/L)伤流液中K总量(g)0.129.2 1.045.010.026.6可见,浓度适中,进入的离子总量最大,2.温度:升高,水分易扩散进入,使木质部汁液体积增加;而因质膜的选择性随温度的提高而增加,利于钾的吸收,但对钙不利。,3.呼吸作用:受抑制时,K、Ca2运输量减少,但K/Ca2比值不变,第二节 养分的长距离运输 含义:也称纵向运输,是指养分沿木质部导管向上,或沿轫皮部筛管向上或向下移动的过程。由于养分迁移距离较长,故称为长距离运输。一、木质部运输(一)动力和方向动力:蒸腾作用一般起主导作用 根压当蒸腾作用微弱或停止时,起主

5、导作用,木质部导管,木质部汁液的移动是根压和蒸腾作用驱动的共同结果,但两种力量的强度并不相同。从力量上,蒸腾拉力远大于根压压力。从作用的时间上,蒸腾作用在一天内有阶段性,而根压具有连续性。蒸腾对木质部养分运输作用的大小取决于植物生育阶段、昼夜时间、离子种类和离子浓度等因素。,(1)植物生育阶段 在植物生长旺盛期,蒸腾强度大,木质部养分的运输主要靠蒸腾拉力。(2)昼夜时间 白天木质部运输主要靠蒸腾作用,驱动力较强,且运输量大。夜间主要靠根压,其动力弱,养分运输量小。(3)元素种类 一般以质外体运输的养分受蒸腾作用影响较大,而以共质体运输为主的养分则受影响较小。高蒸腾强度对K+的木质部运输速率影响

6、不大但能大幅度提高Na+的运输速率。植物体内以分子态运输的养分,其木质部运输也受蒸腾作用的强烈影响,最为典型的是硅和硼。钙的木质部运输与蒸腾作用也有密切关系。,蒸腾强度对甜菜木质部运输K+和Na+的影响(mol/株2h),燕麦植株蒸腾(耗水)与硅吸收的计算值和实测值间的关系,(4)离子浓度 介质中养分的浓度明显影响进入木质部离子的数量,也能影响蒸腾作用对木质部养分运输作用的程度。(5)植物器官 植物各器官的蒸腾强度不同,在木质部运输的养分数量上也有差异。养分的积累量取决于蒸腾速率和蒸腾持续的时间。蒸腾强度越大和生长时间越长的植物器官,经木质部运入的养分就越多。,土壤施硼对油菜地上部各器官中硼分

7、配的影响,油菜各器官中硼的含量有明显影响。叶片蒸腾量大,硼的含量就高,而且施硼量对含量的影响十分明显;荚果蒸腾量小,硼的含量较低,受施硼量的影响较小;甚至在同一叶片上也会因蒸腾量的局部差异而造成含硼量的明显变化。一般,叶尖蒸腾量最大,硼的含量最高;叶柄蒸腾量最小,相应地含硼量也最低。,红辣椒结果期地上部蒸腾率对其果实中矿质元素含量的影响,在生产实践中,茄果类的番茄、辣椒等在结果期若遇较长时间的低温或 阴雨天,蒸腾强度低,常会发生 果实生理性缺钙而出现脐腐病。,(一)动力和方向2.方向:单向,自根部向地上部运输目的地:叶子、果实和种子养分进入叶片的过程称为“卸”(unloading),(二)运输

8、机理1.质流:指养分离子在木质部导管中随着蒸腾流向 上运输的方式主要2.交换吸附 含义:由于木质部导管壁上有很多带负电荷的阴离子基团,它们将导管汁液中的阳离子吸附在管壁上。所吸附的离子又可被其它阳离子交换下来,继续随汁液向上移动。结果:降低了离子的运输速率,出现滞留作用(导管周围组织带负电荷的细胞壁也参与吸引滞留在导管中的阳离子的作用)影响因素:离子种类、离子浓度、离子活度、竞争离子、导管壁电荷密度等。,竞争阳离子与根分泌物对离体菜豆茎中长距离运输的影响*,*45Ca转移数量以mol/g干重表示。,(三)养分的再吸收和释放1.再吸收含义:溶质在木质部导管运输过程中,部分离子可被导管周围的薄壁细

9、胞吸收,从而减少了溶质到达茎叶数量的现象。结果:使木质部汁液的离子浓度自下而上递减影响因素:植物的生物学特性和离子性质应用例子:,例1.选育牧草:供钠后不同牧草中Na的含量(,干重)牧草种类根部地上部杂交三叶草0.770.22梯牧草0.280.38黑麦草0.051.16,应考虑选育根系对钠离子再吸收较弱的牧草品种。,例2.指导施肥:番茄和菜豆植株中钼的含量(mg/kg干重)植株部位番茄菜豆叶片325 85茎123 210根4701030,菜豆应适当多施钼肥,而番茄可少施或暂时不施。,2.释放含义:木质部运输过程中,导管周围的薄壁细胞将吸收了的离子重新释放到导管中的现象作用:维持木质部汁液中养分

10、浓度的稳定性 养分浓度高,再吸收 养分浓度下降,释放,木质部导管木质部薄壁细胞,二、韧皮部运输(一)特点:养分在活细胞内双向运输 筛管:管状活细胞,端壁有筛孔轫皮部的结构 伴胞:以胞间连丝与筛管相通 薄壁细胞,玉米茎维管束的横切面,(二)韧皮部汁液的组成,韧皮部汁液的组成与木质部比较有显著的差异:第一,韧皮部汁液的pH值高于木质部 前者偏碱性而后者偏酸性。韧皮部偏碱性可能是因其含有HCO3-和大量K+等阳离子所引起的;第二,韧皮部汁液中干物质和有机化合物远高于木质部 韧皮部汁液中的C/N比值比木质部汁液宽;第三,某些矿质元素,如钙和硼在韧皮部汁液中的含量远小于木质部,其它矿质元素的浓度高于木质

11、部;无机态阳离子总量大大超过无机阴离子总量,过剩正电荷由有机阴离子,主要是氨基酸进行平衡。,三、木质部与韧皮部之间的养分转移养分从韧皮部向木质部的转移为顺浓度梯度,可以通过筛管原生质膜的渗漏作用来实现。相反,养分从木质部向韧皮部的转移是逆浓度梯度、需要能量的主动运输过程。这种转移主要需经转移细胞进行。韧皮部木质部,意义:木质部向韧皮部养分的转移对调节植物体内养分分配,满足各部位的矿质营养起着重要作用。,木质部与韧皮部之间养分转移示意图,植物根系从介质中吸收的矿质养分,一部分在根细胞中被同化利用;另一部分经皮层组织进入木质部输导系统向地上部输送,供应地上部生长发育所需要。植物地上部绿色组织合成的

12、光合产物及部分矿质养分则可通过韧皮部系统运输到根部,构成植物体内的物质循环系统,调节着养分在植物体内的分配。,植物体内发生氮素的大规模循环,可能是由于根部硝态氮的还原能力有限,而必须经地上部还原后再运回根系,满足其合成蛋白质等代谢活动的需要。,经木质部运输到茎叶的氮素,其中79以还原态的形式再由韧皮部运回根中,其中的21%被根系所利用,其余部分再由木质部运向地上部。,钾的循环对体内电性的平衡和节省能量起着重要的作用。,参加体内往复循环的钾可占到地上部总钾量的20以上。,四、养分循环的作用调控根系吸收养分的速率 主要通过“反馈控制”来实现地上部养分在轫皮部中运到根部的数量是反映地上部营养状况的一

13、种信号,当运输养分的数量 某一临界值:营养状况良好 V吸收运输养分的数量 某一临界值:养分缺乏 V吸收,根部离子吸收的反馈调控模型,第四节 养分的再利用,含义:植物某一器官或部位中的矿质养分可通过轫皮部运往其它器官或部位而被再度利用的现象。一、养分再利用的过程第一步:养分的激活 养分离子在细胞中被转化为可运输的形态。由需要养分的新器官发出“养分饥饿”的信号,信号传到老器官,运输系统被激活而启动,将养分转移到细胞外,准备进行长距离运输。,只有移动能力强的养分元素才能被再利用,第二步:养分进入轫皮部 被激活的养分从木质部导管通过主动运输转移至轫皮部(“装”),进行长距离运输,到达茎后,养分可通过转

14、移细胞进入木质部向上运输。第三步:进入新器官 养分通过轫皮部或木质部运至靠近新器官的部位,再经过跨质膜的主动运输过程“卸”入需要养分的新器官细胞内。经历:共质体(老器官细胞内激活)质外体(装入轫皮部之前)共质体(轫皮部)质外体(卸入新器官之前)共质体(新器官细胞内),(质外体)细胞外,韧皮部 木质部(共质体)(质外体),主动,“装”,运输,主动运输,“卸”,转移细胞,转移,植物体内养分再利用过程示意图,二、养分再利用与缺素部位,钾营养状况对番茄钾分配的影响,三、养分再利用与生殖生长植物生长进入生殖生长阶段后,根的活力减弱,养分吸收功能衰退。此时,植物体内养分总量增加不多,各器官中养分含量主要靠

15、体内再分配进行调节。营养器官将养分不断地运往生殖器官,随着时间的延长,营养器官中的养分,所占比例逐渐减少。,在农业生产中,养分的再利用程度是影响经济产量和养分利用效率的重要因素。如果能通过各种措施提高植物体内养分的再利用效率,就能使有限的养分物质发挥其更大的增产作用。,本章小结:养分的短距离运输养分的长距离运输植物体内养分的循环养分的再利用,本章复习题:1.养分的横向运输是指养分沿根的、,最后到达中柱 的过程。2.养分的短距离运输可通过 和 等2种途径进行。3.养分通过横向运输从外部介质到达中柱的木质部导管至少穿过原生质膜 次。4.养分的纵向运输是指养分沿 向上,或沿 向上或向下迁移的过程。5.养分在植物的木质部导管与导管周围的薄壁细胞之间存在着 和 的相互关系。,THANK YOU!,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号